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1 Permutations

1.1 An introduction to permutations
Recall that a permutation of a set X is a bijection from X to X. The collection of all permutations of X is
written Sym(X). If X is just the set {1, 2, . . . , n} then we write Sn instead of Sym(X).

Example 1.1.1. How large is Sn? Well, we have n choices for the image of 1. For the image of 2 we have
only n−1 choices (since bijections are one-to-one). For the image of 3 we have only n−2 choices, etc. Finally,
for the image of n we have only one choice remaining. Therefore:

∣Sn∣ = n!

In fact the same argument tells us that there are ∣X∣! elements in Sym(X).
There are many different notations for permutations, but we will start to introduce a very powerful notation
called cycle notation.

Example 1.1.2. Consider the following permutation σ of the set X = {1, 2, 3, 4, 5, 6, 7}:
1 2 3 4 5 6 7
↓ ↓ ↓ ↓ ↓ ↓ ↓

1 4 6 3 5 7 2

First of all notice that the top row lists the elements of X in some order. Because σ is a bijection, the second
row can have no repeats (one-to-one) and must include all of X (onto) so the second row is just X again but
in a different order. This is why people often speak of permutations as being a reordering of a set.
This notation is clear, but it is too cumbersome to use in a powerful theory like group theory.
Let’s draw a picture of this permutation instead:

We can see that σ can be broken down into cycles. This is the key observation for our new notation. We can
write the permutation σ as:

σ = (1)(2 4 3 6 7)(5)
Each bracket represents a cycle, so 1 is in cycle on its own, there’s a cycle 2 → 4 → 3 → 6 → 7 → 2 and 5 is in
a cycle on its own.
We don’t bother writing down the cycles of length one (although we did in the example above to get used to
the notation). So, we will usually write σ = (2 4 3 6 7). Since we know that σ ∈ S7 we can tell (because they
are missing) that 1 and 5 are fixed by σ.

Example 1.1.3. Here are some more permutations in cycle notation.

(i) The permutation τ = (1 2 3 4 5 6 7 8 9) of the set {1, . . . , 9} sends:

1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 1

It is the permutation:
1 2 3 4 5 6 7 8 9
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

2 3 4 5 6 7 8 9 1

See how much neater the cycle notation is? Wait until you start multiplying permutations—then you
will really love it.
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(ii) The permutation ρ = (5 2 3)(7 8 1)(9 4) of the set {1, . . . , 9} sends:

5 → 2 → 3 → 5 and 7 → 8 → 1 → 7 and 9 → 4 → 9 and 6 → 6

It is the permutation:
1 2 3 4 5 6 7 8 9
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

7 3 5 9 2 6 8 1 4

(How do we know that 6 → 6? Because ρ ∈ S9 and 6 is missing from all the cycles.)

How to apply permutations to elements of X. Recall that a permutation σ of X is a bijective function
from X to X. How do we find the image σ(x) of some x ∈ X using the cycle notation?
Well first of all, we don’t write σ(x) because we are using “(” and “)” to denote cycles—instead we just write
σx.

Definition 1.1.4. Let a1, a2, . . . , ar be distinct elements of a set X. Then

σ = (a1 a2 . . . ar)

is the permutation sending
a1 → a2 → ⋯ → ar → a1

and fixing everything else in X \ {a1, . . . , ar}. Such a permutation is called an r-cycle or a cycle of length r.

Definition 1.1.5. A collection of cycles in Sn is called a collection of disjoint cycles if no element of
{1, 2, . . . , n} appears in more than one of the cycles.

Example 1.1.6. Cycles (1 2 3), (4 7 5) are disjoint, but cycles (1 2 3), (4 3 7 5) are not.

Remark 1.1.7. Notice that the cycles (1 2 3) and (3 1 2) and (2 3 1) are all equal. There is more than one
way to write down the same cycle.
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1.2 Products of permutations
Definition 1.2.1. Let σ and ρ be permutations of the same set X, and recall that σ and ρ are bijective
functions from X to X.
The product of the permutations σ and ρ is the function composition σ ◦ ρ that you have seen in your first
year. Usually we don’t bother writing the symbol ◦.

Notice that:

σρ

Means: first do ρ

then do σ

! Warning! Some books do this the opposite way round (although most agree with the way we do it here).

Example 1.2.2. Here are some examples of products of permutations. You can calculate their product the
long way (writing out 1, 2, . . . then drawing the arrows, finding the images, then converting back to cycle
notation) or you can do it quickly by keeping within the cycle notation

(i) If σ = (1 2 3) and ρ = (1 5 3 4) are permutations in S6, then:

(pick any element in set to start e.g. 1)

σρ1 = σ applied to (ρ1) = σ5 = 5 so σρ looks like (1 5 . . .)⋯
σρ5 = σ applied to (ρ5) = σ3 = 1 so σρ looks like (1 5)⋯

(we’ve finished a cycle so we just pick the next unknown)

σρ2 = σ2 = 3 so σρ looks like (1 5)(2 3 . . .)⋯
σρ3 = σ4 = 4 so σρ looks like (1 5)(2 3 4 . . .)⋯
σρ4 = σ1 = 2 so σρ looks like (1 5)(2 3 4)⋯

(we’ve finished a cycle so we just pick the next unknown)

σρ6 = σ6 = 6 so σρ looks like (1 5)(2 3 4)(6)⋯
(there are no unknowns left so we are done)

Hence σρ = (1 5)(2 3 4) is a permutation in S6.

(ii) If σ = (1 2) and ρ = (2 3) and τ = (3 5) are permutations in S5 then:

σρτ1 = σρ1 = σ1 = 2 so σρτ looks like (1 2 . . .)⋯
σρτ2 = σρ2 = σ3 = 3 so σρτ looks like (1 2 3 . . .)⋯
σρτ3 = σρ5 = σ5 = 5 so σρτ looks like (1 2 3 5 . . .)⋯
σρτ5 = σρ3 = σ2 = 1 so σρτ looks like (1 2 3 5)⋯

(there are no unknowns left so we are done)

Hence σρτ = (1 2 3 5) is a permutation in S5.

Question 1.2.3. A question to get you thinking about what you’ve seen so far.

(i) Let τ = (3 5) and σ = (2 4 6 8) and ρ = (2 3 4) be permutations in S10. Find the product τσρ and write
your answer using cycle notation.

Answer: τσρ = (3 5)(2 4 6 8)(2 3 4) = (1)(2 5 3 6 8)(4)(7)(9)(10) = (2 5 3 6 8).
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Remark 1.2.4. Taking products of permutations is not commutative. For example:

• (1 2 3)(1 5 3 4) = (1 5)(2 3 4)
• (1 5 3 4)(1 2 3) = (1 2 4)(3 5)

Remark 1.2.5. As we have seen, taking products of cycles can be fiddly. However, taking products of disjoint
cycles is easy to calculate! To see why, suppose the following are disjoint cycles:

(a1 a2 . . . aα), (b1 b2 . . . bβ), . . . , (x1 x2 . . . xξ)

Their product is:

a1 → a2 → ⋯ → aα → a1 and

b1 → b2 → ⋯ → bβ → b1 and

⋯ and

x1 → x2 → ⋯ → xξ → x1

In cycle notation this is just:
(a1 a2 . . . aα)(b1 b2 . . . bα)⋯(x1 x2 . . . xξ)

Example 1.2.6. Let σ = (1 2 3) and ρ = (4 7 5) be permutations in S8. Then σρ maps:

1 → 2 → 3 → 1 and 4 → 7 → 5 → 4 with 6 and 8 fixed

Hence σρ = (1 2 3)(4 7 5).

Proposition 1.2.7. If σ and ρ are disjoint cycles then σρ = ρσ. If σ and ρ are not disjoint cycles then it can

happen that σρ /= ρσ.

What is the point?!. This result can speed up calculations involving disjoint cycles so remember it!
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1.2.1 Handout for Section 1.2

Question 1.2.8. A question to get you thinking about what you’ve seen so far.

(i) Write down all the equivalent ways of writing down the cycle (1 2 3 4 5)
Answer: (1 2 3 4 5), (2 3 4 5 1), (3 4 5 1 2), (4 5 1 2 3), (5 1 2 3 4).

Proof of Proposition 1.2.7. Suppose σ = (a1 a2 . . . an) and ρ = (b1 b2 . . . bm) with {a1, . . . , an}∩{b1, . . . , bm} =
∅ (i.e. that they are dijoint). Then σρ is the permutation,

a1 a2 . . . an b1 b2 . . . bm
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a2 a3 . . . a1 b2 b3 . . . b1

=

b1 b2 . . . bm a1 a2 . . . an

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

b2 b3 . . . b1 a2 a3 . . . a1

which, in cycle notation, equals (b1 b2 . . . bm)(a1 a2 . . . an) = ρσ.
On the other hand, if σ and ρ are not disjoint cycles, then we have already seen in Remark 1.2.4 that it can
happen that σρ /= ρσ.


