

2.2 Subgroups

Definition 2.2.1. Let G be a group with operation $*$. We say that H is a *subgroup* of G if $H \leq G$ and H is itself a group with the operation on H being also $*$. The notation we use is $H \leq G$. Sometimes we say that G is a *supergroup* of H .

Example 2.2.2. Here are some examples of subgroups.

- (i) Let G be any group. Then $G \leq G$ and $\langle e_G \rangle \leq G$.
- (ii) $(\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +)$
- (iii) For $k \in \mathbb{N}$ we typically denote the group $(k\mathbb{Z}, +)$ simply by $k\mathbb{Z}$. It is the group consisting of all multiples of k under addition. It is a subgroup of $(\mathbb{Z}, +)$.

Non-Example 2.2.3. Here are some examples of things that are not subgroups.

- (i) $(\mathbb{Q}^*, \times) \not\leq (\mathbb{R}, +)$
(because the operations do not match)
- (ii) $(\mathbb{N}, +) \not\leq (\mathbb{Z}, +)$
(because $(\mathbb{N}, +)$ is not a group)
- (iii) $\text{GL}(2, \mathbb{R}) \not\leq (\mathbb{R}^*, \times)$
(because the set of invertible 2×2 matrices is not a subset of the real numbers)

Theorem 2.2.4. Let H be a subgroup of G .

- (i) $e_H = e_G$
- (ii) For all $h \in H$, the inverse of h in H is equal to the inverse of h in G

Proof. These statements were proved in Algebraic Structures. □

Theorem 2.2.5. (Quick Subgroup Test.) Let G be a group with operation $*$, and suppose H is a subset of G . Then $(H, *)$ is a subgroup of G if and only if:

- (i) H contains the identity (i.e. $e_G \in H$)
- (ii) H is closed under $*$ (i.e. for all $h_1, h_2 \in H$ we have $h_1 * h_2 \in H$)
- (iii) Every element of H has an inverse in H (i.e. for all $h \in H$ we have $h^{-1} \in H$)

Proof. Proved in Algebraic Structures (although first point may have been $H \neq \emptyset$). □

Proposition 2.2.6. Let G be a group and $H \leq G$. Then:

- (i) $|H| = 1$ if and only if $H = \langle e_G \rangle$
- (ii) If $|G|$ is finite, then $|H| = |G| \Leftrightarrow H = G$.

Proof. You will prove this as an exercise in one of your problem sheets. □

Example 2.2.7. Let G be any group.

- (i) $\{e_G\}$ is a subgroup of G .
- (ii) G is a subgroup of G .

Definition 2.2.8. The subgroup $\{e_G\}$ of G is often written $\langle e_G \rangle$. It is called the *trivial group*. If a subgroup H of G is not equal to G then we call it a *proper subgroup* and write $H < G$. If $\{e\} < H < G$ then we say that H is a proper nontrivial subgroup of G .

Example 2.2.9. Let n be a natural number. Recall the *additive group of integers modulo n* , written $\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$, where $[m]_n$ is the equivalence class of all integers that have remainder m when divided by n . Recall this is a group under the operation $[k]_n \oplus [m]_n = [k+m]_n$. See handout for more details. Note that $\mathbb{Z}_n \not\leq (\mathbb{Z}, +)$ because it is not a subset (and the operation \oplus is different to $+$).

2.2.1 Handout for Section 2.2

Definition 2.2.10. Let n be a positive integer, and recall that we can think of integers “modulo n ”: two integers are equivalent modulo n if they have the same remainder when divided by n .

Being equivalent modulo n is an equivalence relation, so it is a relation that is reflexive, symmetric and transitive.

There are n congruence classes modulo n , which we denote by $[k]_n$ for $k \in \mathbb{Z}$ (sometimes we just write $[k]$). For example, when $n = 5$,

$$\begin{aligned}[1]_5 &= [6]_5 = [-34]_5 = \{\dots, -9, -4, 1, 6, 11, \dots\} \quad \text{and} \\ [2]_5 &= [7]_5 = [-33]_5 = \{\dots, -8, -3, 2, 7, 12, \dots\},\end{aligned}$$

The set of all congruency classes modulo n is $\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$. Each integer lies in precisely one of these classes.

There is a natural operation on \mathbb{Z}_n under which it forms a group: for $[a]_n, [b]_n \in \mathbb{Z}_n$, define

$$[a]_n \oplus [b]_n = [a + b]_n.$$

For example, when $n = 5$:

$$\begin{aligned}[2]_5 \oplus [1]_5 &= [2 + 1]_5 = [3]_5 \quad \text{and} \\ [3]_5 \oplus [2]_5 &= [3 + 2]_5 = [5]_5 = [0]_5.\end{aligned}$$

The group \mathbb{Z}_n is called *the additive group of integers modulo n* .

2.3 Cyclic groups

Definition 2.3.1. If G be a group with operation $*$, and $g \in G$ and $n \in \mathbb{N}$. Recall:

$$g^n = g * g * \cdots * g \text{ (n times).}$$

Also $g^0 = e_G$ and $g^{-n} = (g^n)^{-1}$. You should also check that $g^n g^m = g^{n+m}$ holds for $n, m \in \mathbb{Z}$.

Now we define

$$\langle g \rangle = \{g^n : n \in \mathbb{Z}\}$$

to be the set of all integer powers of g . It is a group under the operation $*$ (exercise—check this!).

Hence $\langle g \rangle \leq G$. It is called the *cyclic group generated by g* .

We say G is *cyclic* if there exists some $g \in G$ for which $G = \langle g \rangle$. In this case we say that the element g *generates* G .

⚠ Warning! Be careful with the notation g^n means $g * g * \cdots * g$ (n times) and sometimes $*$ will mean e.g. addition.

Later in the course we will use the notation $\langle \cdots \rangle$ again in a more powerful way.

Proposition 2.3.2. If G is a group and $g \in G$, then $|\langle g \rangle| = o(g)$.

Proof. You will prove this for finite groups as one of your exercises. The proof for infinite groups easy: it is obvious that $o(g)$ is finite if and only if $\langle g \rangle$ is finite. \square

Example 2.3.3. Here are some examples of cyclic subgroups of some groups you know.

- (i) In the group $(\mathbb{Z}, +)$ the subgroup $\langle 2 \rangle$ is equal to $2\mathbb{Z}$ (i.e. the group of even integers under addition).
- (ii) In the group S_5 , the subgroup $\langle (12)(345) \rangle$ has 6 elements. Let $a = (12)(345)$, then $a^6 = e$ and so,

$$\langle a \rangle = \{e, a, a^2, a^3, a^4, a^5\} = \{e, (12)(345), (354), (12), (345), (12)(354)\}.$$

- (iii) In the group $GL(2, \mathbb{R})$, the cyclic subgroup $\left\langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle$ contains only two elements. What are they?

Example 2.3.4. Here is an example of a cyclic group.

$(\mathbb{Z}, +) = \langle 1 \rangle = \langle -1 \rangle$, so $(\mathbb{Z}, +)$ is cyclic and is generated by 1.

Proof: Fix $n \in \mathbb{N}$. We will show that $n, -n, 0 \in \langle 1 \rangle$, from which it follows immediately that $(\mathbb{Z}, +) = \langle 1 \rangle$.

Now that $n = 1 + 1 + \cdots + 1 = 1 * 1 * \cdots * 1 = 1^n$. Hence $n \in \langle 1 \rangle$. Furthermore $n + (-n) = 0 = e$, so $-n = n^{-1} = (1^n)^{-1}$. By Theorem 2.1.11(vi) we know $(1^n)^{-1} = 1^{-n} \in \langle 1 \rangle$. Hence $-n \in \langle 1 \rangle$. Finally, we note that $0 = 1^0 \in \langle 1 \rangle$.

Non-Example 2.3.5. Here is an example of a group that is not cyclic.

(\mathbb{Q}^*, \times) is not cyclic.

Proof: Suppose it is cyclic. Then there exist nonzero $a, b \in \mathbb{Q}$ such that every nonzero rational number can be written as $(a/b)^n = a^n/b^n$ for some $n \in \mathbb{Z}$. This is clearly false—for example if $p, q > \max(a, b)$ are primes then $p/q \in \mathbb{Q}^*$ can't be written in the form a^n/b^n .

Definition 2.3.6. This is an important example of a cyclic group. For $n \in \mathbb{N}$, the cyclic group generated by the n -cycle $(1 2 \dots n)$ is called the *cyclic group of order n* and is denoted by C_n . In other words:

$$C_n = \langle (1 2 \dots n) \rangle.$$

Since the n -cycle is an element of S_n , we have that $C_n \leq S_n$.