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2.2 Subgroups

Definition 2.2.1. Let G be a group with operation *. We say that H is a subgroup of G if H € G and H is
itself a group with the operation on H being also *. The notation we use is H < G. Sometimes we say that
G is a supergroup of H.
Example 2.2.2. Here are some examples of subgroups.

(i) Let G be any group. Then G < G and {e¢) < G.

(ii) (Z,+) = (Q,+) = (R, +)

(iii) For k € N we typically denote the group (kZ, +) simply by kZ. It is the group consisting of all multiples

of k under addition. It is a subgroup of (Z, +).

Non-Example 2.2.3. Here are some examples of things that are not subgroups.
(i) (Q%, %) # (R, +)
(because the operations do not match)
(i) (N,+) #(Z,+)
(because (N, +) is not a group)
(i) GL(2,R) # (R",x)

(because the set of invertible 2 X 2 matrices is not a subset of the real numbers)

Theorem 2.2.4. Let H be a subgroup of G.

(i) em =eq
(i) For all h € H, the inverse of h in H is equal to the inverse of h in G

Proof. These statements were proved in Algebraic Structures. O

Theorem 2.2.5. (Quick Subgroup Test.) Let G be a group with operation *, and suppose H is a subset
of G. Then (H,*) is a subgroup of G if and only if:

(i) H contains the identity (i.e. eq € H)
(is) H is closed under * (i.e. for all hy,hy € H we have hy * ho € H)
(#i) Every element of H has an inverse in H (i.e. for all h € H we have h™" € H)

Proof. Proved in Algebraic Structures (although first point may have been H # @). O

Proposition 2.2.6. Let G be a group and H < G. Then:
(i) |H| =1 if and only if H = (eq)
(ii) If |G| is finite, then |H| = |G| = H = G.

Proof. You will prove this as an exercise in one of your problem sheets. O

Example 2.2.7. Let G be any group.
(i) {eg} is a subgroup of G.
(ii) G is a subgroup of G.

Definition 2.2.8. The subgroup {eg} of G is often written {eq). It is called the trivial group.
If a subgroup H of G is not equal to G then we call it a proper subgroup and write H < G. If {e} < H < G
then we say that H is a proper nontrivial subgroup of G.

Example 2.2.9. Let n be a natural number. Recall the additive group of integers modulo n, written Z,, =
{[0].,[1],,...,[n — 1],.}, where [m], is the equivalence class of all integers that have remainder m when
divided by n. Recall this is a group under the operation [k], ® [m], = [k + m],. See handout for more
details. Note that Z, # (Z,+) because it is not a subset (and the operation @ is different to +).
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2.2.1 Handout for Section 2.2

Definition 2.2.10. Let n be a positive integer, and recall that we can think of integers “modulo n”: two
integers are equivalent modulo n if they have the same remainder when divided by n.

Being equivalent modulo n is an equivalence relation, so it is a relation that is reflexive, symmetric and
transitive.

There are n congruence classes modulo n, which we denote by [k],, for k € Z (sometimes we just write [k]).
For example, when n = 5,

[1]s =[6]s =[-34)s={...,-9,-4,1,6,11,...} and
[2]s =[7)s =[-33]s={...,-8,-3,2,7,12,.. .},

The set of all congruency classes modulo n is Z,, = {[0],,[1]s,...,[n—1]5}. Each integer lies in precisely one
of these classes.
There is a natural operation on Z, under which it forms a group: for [a],,[b], € Z,, define

[a], @ [b], = [a+b],.

For example, when n = 5:

[2]s@[1]s=[2+1]s=[3]s and
3]s ®[2]5 =[3+2]5 =[5]5 = [0]5.

The group Z,, is called the additive group of integers modulo n.
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2.3 Cyclic groups
Definition 2.3.1. If G be a group with operation *, and g € G and n € N. Recall:
g" =g* g% *g (n times).
Also ¢° = e and g™ = (¢")™". You should also check that g"¢™ = ¢"*™ holds for n,m € Z.
Now we define

(9)={g" :nez}
to be the set of all integer powers of g. It is a group under the operation * (exercise—check this!).

Hence (g) = G. It is called the cyclic group generated by g.
We say G is cyclic if there exists some g € G for which G = {g). In this case we say that the element g

generates G.

@® Warning! Be careful with the notation g" means g * g * --- % g (n times) and sometimes * will mean e.g.
addition.

Later in the course we will use the notation (:-+) again in a more powerful way.
Proposition 2.3.2. If G is a group and g € G, then |{g)| = o(g).

Proof. You will prove this for finite groups as one of your exercises. The proof for infinite groups easy: it is
obvious that o(g) is finite if and only if (g) is finite. O

Example 2.3.3. Here are some examples of cyclic subgroups of some groups you know.
(i) In the group (Z, +) the subgroup (2) is equal to 2Z (i.e. the group of even integers under addition).
(ii) In the group Ss, the subgroup ((12)(345)) has 6 elements. Let a = (12)(345), then a® = e and S0,

(a) = {e,a,a’,a’ a*,a’} = {e,(12)(345),(354),(12),(345),(12)(354)}.

-1

(iii) In the group GL(2,R), the cyclic subgroup <( 0

0
1 )> contains only two elements. What are they?
Example 2.3.4. Here is an example of a cyclic group.

(Z,+) = (1) = (=1), so (Z,+) is cyclic and is generated by 1.

Proof: Fix n € N. We will show that n, —n,0 € (1), from which it follows immediately that (Z,+) = (1).

Now that n =1+ 1+-++1=1%1%--%1=1". Hence n € (1). Furthermore n + (-n) =0 = e, so
-n=n""=(1")"". By Theorem [2.1.11 we know (1™)™" = 17" € (1). Hence —n € (1). Finally, we
note that 0 = 1° € (1).

Non-Example 2.3.5. Here is an example of a group that is not cyclic.
(Q*, x) is not cyclic.
Proof: Suppose it is cyclic. Then there exist nonzero a,b € Q such that every nonzero rational number

can be written as (a/b)" = a™ [b" for some n € Z. This is clearly false—for example if p,q > max(a,b)
are primes then p/q € Q" can’t be written in the form a" /b".

Definition 2.3.6. This is an important example of a cyclic group. For n € N, the cyclic group generated by
the n-cycle (1 2 ... n) is called the cyclic group of order n and is denoted by C,,. In other words:

C,=((12 ... n)).

Since the n-cycle is an element of S,,, we have that C,, < 5,,.



