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2.2 Subgroups
Definition 2.2.1. Let G be a group with operation ∗. We say that H is a subgroup of G if H ⊆ G and H is
itself a group with the operation on H being also ∗. The notation we use is H ≤ G. Sometimes we say that
G is a supergroup of H.

Example 2.2.2. Here are some examples of subgroups.

(i) Let G be any group. Then G ≤ G and ⟨eG⟩ ≤ G.

(ii) (Z,+) ≤ (Q,+) ≤ (R,+)
(iii) For k ∈ N we typically denote the group (kZ,+) simply by kZ. It is the group consisting of all multiples

of k under addition. It is a subgroup of (Z,+).

Non-Example 2.2.3. Here are some examples of things that are not subgroups.

(i) (Q∗
,×) /≤ (R,+)

(because the operations do not match)

(ii) (N,+) /≤ (Z,+)
(because (N,+) is not a group)

(iii) GL(2,R) /≤ (R∗
,×)

(because the set of invertible 2 × 2 matrices is not a subset of the real numbers)

Theorem 2.2.4. Let H be a subgroup of G.

(i) eH = eG

(ii) For all h ∈ H, the inverse of h in H is equal to the inverse of h in G

Proof. These statements were proved in Algebraic Structures.

Theorem 2.2.5. (Quick Subgroup Test.) Let G be a group with operation ∗, and suppose H is a subset
of G. Then (H,∗) is a subgroup of G if and only if:

(i) H contains the identity (i.e. eG ∈ H)

(ii) H is closed under ∗ (i.e. for all h1, h2 ∈ H we have h1 ∗ h2 ∈ H)

(iii) Every element of H has an inverse in H (i.e. for all h ∈ H we have h
−1

∈ H)

Proof. Proved in Algebraic Structures (although first point may have been H /= ∅).

Proposition 2.2.6. Let G be a group and H ≤ G. Then:

(i) ∣H∣ = 1 if and only if H = ⟨eG⟩
(ii) If ∣G∣ is finite, then ∣H∣ = ∣G∣ ⇔ H = G.

Proof. You will prove this as an exercise in one of your problem sheets.

Example 2.2.7. Let G be any group.

(i) {eG} is a subgroup of G.

(ii) G is a subgroup of G.

Definition 2.2.8. The subgroup {eG} of G is often written ⟨eG⟩. It is called the trivial group.
If a subgroup H of G is not equal to G then we call it a proper subgroup and write H < G. If {e} < H < G
then we say that H is a proper nontrivial subgroup of G.

Example 2.2.9. Let n be a natural number. Recall the additive group of integers modulo n, written Zn =

{[0]n, [1]n, . . . , [n − 1]n}, where [m]n is the equivalence class of all integers that have remainder m when
divided by n. Recall this is a group under the operation [k]n ⊕ [m]n = [k + m]n. See handout for more
details. Note that Zn /≤ (Z,+) because it is not a subset (and the operation ⊕ is different to +).
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2.2.1 Handout for Section 2.2

Definition 2.2.10. Let n be a positive integer, and recall that we can think of integers “modulo n”: two
integers are equivalent modulo n if they have the same remainder when divided by n.
Being equivalent modulo n is an equivalence relation, so it is a relation that is reflexive, symmetric and
transitive.
There are n congruence classes modulo n, which we denote by [k]n for k ∈ Z (sometimes we just write [k]).
For example, when n = 5,

[1]5 = [6]5 = [−34]5 = {. . . ,−9,−4, 1, 6, 11, . . .} and

[2]5 = [7]5 = [−33]5 = {. . . ,−8,−3, 2, 7, 12, . . .},

The set of all congruency classes modulo n is Zn = {[0]n, [1]5, . . . , [n− 1]5}. Each integer lies in precisely one
of these classes.
There is a natural operation on Zn under which it forms a group: for [a]n, [b]n ∈ Zn, define

[a]n ⊕ [b]n = [a + b]n.

For example, when n = 5:

[2]5 ⊕ [1]5 = [2 + 1]5 = [3]5 and

[3]5 ⊕ [2]5 = [3 + 2]5 = [5]5 = [0]5.

The group Zn is called the additive group of integers modulo n.
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2.3 Cyclic groups
Definition 2.3.1. If G be a group with operation ∗, and g ∈ G and n ∈ N. Recall:

g
n
= g ∗ g ∗⋯ ∗ g (n times).

Also g
0
= eG and g

−n
= (gn)−1. You should also check that g

n
g
m

= g
n+m

holds for n,m ∈ Z.

Now we define
⟨g⟩ = {gn ∶ n ∈ Z}

to be the set of all integer powers of g. It is a group under the operation ∗ (exercise—check this!).

Hence ⟨g⟩ ≤ G. It is called the cyclic group generated by g.

We say G is cyclic if there exists some g ∈ G for which G = ⟨g⟩. In this case we say that the element g
generates G.

! Warning! Be careful with the notation g
n
means g ∗ g ∗⋯∗ g (n times) and sometimes ∗ will mean e.g.

addition.

Later in the course we will use the notation ⟨⋯⟩ again in a more powerful way.

Proposition 2.3.2. If G is a group and g ∈ G, then ∣⟨g⟩∣ = o(g).

Proof. You will prove this for finite groups as one of your exercises. The proof for infinite groups easy: it is
obvious that o(g) is finite if and only if ⟨g⟩ is finite.

Example 2.3.3. Here are some examples of cyclic subgroups of some groups you know.

(i) In the group (Z,+) the subgroup ⟨2⟩ is equal to 2Z (i.e. the group of even integers under addition).

(ii) In the group S5, the subgroup ⟨(1 2)(3 4 5)⟩ has 6 elements. Let a = (1 2)(3 4 5), then a
6
= e and so,

⟨a⟩ = {e, a, a2
, a

3
, a

4
, a

5} = {e, (1 2)(3 4 5), (3 5 4), (1 2), (3 4 5), (1 2)(3 5 4)}.

(iii) In the group GL(2,R), the cyclic subgroup ⟨( −1 0
0 −1 )⟩ contains only two elements. What are they?

Example 2.3.4. Here is an example of a cyclic group.

(Z,+) = ⟨1⟩ = ⟨−1⟩, so (Z,+) is cyclic and is generated by 1.

Proof: Fix n ∈ N. We will show that n,−n, 0 ∈ ⟨1⟩, from which it follows immediately that (Z,+) = ⟨1⟩.
Now that n = 1 + 1 +⋯ + 1 = 1 ∗ 1 ∗⋯ ∗ 1 = 1

n
. Hence n ∈ ⟨1⟩. Furthermore n + (−n) = 0 = e, so

−n = n
−1

= (1n)−1. By Theorem 2.1.11 (vi) we know (1n)−1 = 1
−n

∈ ⟨1⟩. Hence −n ∈ ⟨1⟩. Finally, we
note that 0 = 1

0
∈ ⟨1⟩.

Non-Example 2.3.5. Here is an example of a group that is not cyclic.

(Q∗
,×) is not cyclic.

Proof: Suppose it is cyclic. Then there exist nonzero a, b ∈ Q such that every nonzero rational number
can be written as (a/b)n = a

n/bn for some n ∈ Z. This is clearly false—for example if p, q > max(a, b)
are primes then p/q ∈ Q∗

can’t be written in the form a
n/bn.

Definition 2.3.6. This is an important example of a cyclic group. For n ∈ N, the cyclic group generated by
the n-cycle (1 2 . . . n) is called the cyclic group of order n and is denoted by Cn. In other words:

Cn = ⟨(1 2 . . . n)⟩.

Since the n-cycle is an element of Sn, we have that Cn ≤ Sn.


