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3 Some groups arising from geometry

3.1 The dihedral groups part 1: Dg

Recall that a regular n-gon is a shape with n-sides whose sides are all the same length, and whose internal
angles are all equal. Examples: an equilateral triangle (regular 3-gon); a square (regular 4-gon); a pentagon
(regular 5-gon); etc. The symmetries of these shapes form an important class of groups called the dihedral
groups.

We will look at the a regular 4-gon (square) and will generalise to any regular n-gon.

Imagine we draw a square in the Euclidean plane with centre the origin O. Think of the operations we can
perform without changing the square. We only have:

e 4 reflections (reflect through lines ¢, {5, €3, ¢4 of reflectional symmetry): o, 09, 03,04

e 4 anticlockwise rotations (rotate about the origin with angles 0, 7,7 or 3?”) PO, PZ 5 Pr> P3Z

Anything else will either move the square or distort it so it is no longer a square. These 4 reflections and 4
rotations are called the symmetries of the square.
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Lines of symmetry

These operations send corners to corners, so they are permuting the corners. If we label the corners {1,2, 3,4}
it is easier to see what is happening.

2 3
Square with labelled corners

Rotations: we see that p, fixes all corners while,

po=e, pz= (1234), p.=(13)(24), piz = (1432).
Reflections: here we have,

o1 =(14)(23), o0,=(24), o05=(12)(34), o,=(13).

Notice that the product of any two symmetries gives another symmetry—Of course! If the first operation
doesn’t change the shape, and nor does the second, then their product won’t change the shape either!

The symmetries: {pg, PE s P P3x,01,02,03, 04} under the operation of combining symmetries form a group,
called the symmetry group of the square (also: the isometry group of the square). It also has another name:
the dihedral group of order 8. Because the dihedral group of order 8 permutes the four corners, we can think
of it as a subgroup of S;. Note it is called the Dihedral group of order 8 because it contains 8 permutations
— the order of the group is 8.
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3.2 The dihedral groups part 2: D,,

Now let’s consider a regular n-gon R for some n = 3 (again drawn in the Euclidean plane with the origin at
the centre). We label its corners anticlockwise in order: 1,2;...,n.

5
Regular n-gon R with labelled corners, for n = 8

e Observation 1: R has at most 2n symmetries.
Proof: Any symmetry 7 of a regular n-gon must map corners to corners, and preserve distance (so
adjacent corners are mapped to adjacent corners).
How many choices do we have for 77 Once the image of corner 1 under 7 has been decided (n choices
for this), we know that the image of corner 2 must be adjacent to the image of corner 1 (and there
are just 2 choices for this) and after this the images of all other corners are determined (so no more
choice!). Hence there are 2n choices, therefore there are at most 2n symmetries of our regular n-gon.

e Observation 2: R has at least n lines of reflectional symmetry.
Proof: There is one line of reflectional symmetry through each vertex, and one line of reflectional
symmetry passing through the midpoint of each edge. This gives 2n lines. However, we have double-
counted, since each line passes through the boundary of R twice. Hence n lines.

e Observation 3: R has at least n rotational symmetries.
Proof: An anticlockwise rotation p about the origin by 27” permutes the corners as the permutation
(12 ... n). This permutation has order n so {p°, p',...,p" '} are all distinct.

e Observation 4: No rotational symmetry of R is a reflectional symmetry, and no reflectional symmetry
is a rotational symmetry.
Proof: A rotation preserves the order of the corner labelling (counterclockwise as 1,2,...,n) while a
reflection never preserves this order.

Proposition 3.2.1. The number of symmetries of a reqular n-gon is 2n.

Proof. Exercise: see handout. Hint: Just use the observations. O

In fact, we can always think of the symmetries of a regular n-gon as a permutation of its corners in this way.

Definition 3.2.2. The symmetry group of a regular n-gon with corners labelled (anticlockwise) as 1,2,...,n
has 2n elements and is written

2 n—1
D2n={eap7p7"'7p 7015025"'70n}7

where (as a permutation of the corners) p = (12 ...7n) and oy, ...,0, are reflections through its n lines of
reflectional symmetry. This group is called the dihedral group of order 2n. It is a subgroup of S,,.

Why is this a group? It is a subset of S,,, so we need only check it is a subgroup by applying the Quick
Subgroup Test.

e c€D,,

e Applying any two symmetries must also give a symmetry, so D,,, is closed

e Every element has an inverse:

N o .
(i) o; = o; because it is a reflection

(ii) p" = e, therefore p~* = p"™*

® Warning! Some mathematicians (and books) use D,, instead of D, to refer to the group
{e,p,p°....p" " o1,...,0,}. Why?! No-one knows. Most mathematicians and textbooks use Ds,,, but just
be careful.
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3.2.1 Handout for Section 3.2

Proof of Proposition|3.2.1. Suppose we have a regular n-gon R. By our above observations, we know there

are at least n lines of reflectional symmetry and so there are at least n distinct reflections: o4,...,0,. Each
reflection has order 2.

We have also observed above that R has at least n distinct rotational symmetries, po, pl, e pm1 and that
the set of rotations and the set of reflections is disjoint.

Hence the set {e, p, p2, R pn_l, o1,...,0,} contains 2n distinct symmetries of our regular n-gon R. However,

we also observed above that R has at most 2n symmetries. Therefore this list must consist of all of them. [



