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3.3 Symmetry groups of more general shapes
Definition 3.3.1. In fact, if we are given any shape Π in Rn

, its symmetries (distance-preserving maps from
Rn

to Rn
that send Π to Π) form a group called the symmetry group of Π, which we denote in this course by

Isom(Π). The shape Π might not have any corners, but if we take X to be all the points on its surface then
the symmetry group of Π is a subgroup of Sym(X).

Maps from Rn
to Rn

that preserve distance are called isometries. Many symmetry groups consist of isometries.
For this reason we will often say the symmetry group of isometries of Π instead of the symmetry group of Π.

Example 3.3.2. Let G be the symmetry group of isometries of a cube C. What does it look like?

F

• Notice that any symmetry of a cube is a permutation of its corners

• Choose a face F of the cube. Notice that any permutation of the corners of the cube is completely
determined by what happens to the corners of F .

• The symmetry group of F is D8 (because it is a square)

• There are 6 possible faces that F could be sent to. These can be achieved by 3-dimensional rotations
of the cube. Let’s call these rotations R1, . . . , R6 (where R1 is the trivial rotation)

• By applying a symmetry from D8 to F , and then applying one of R1, . . . , R6, we can achieve every
symmetry of our cube, and since all these send the corners of F to different positions, they are all
different symmetries of the cube

• Hence there are 6 × ∣D8∣ = 48 symmetries to the cube, and it’s symmetry group is: Isom(C) = D8R1 ∪
. . . ∪D8R6. Some of these symmetries are reflections.

There is a natural subgroup of Isom(C): the group Rot(C) of rotations of C. Our face F has the 4 rotations
e, ρ, ρ

2
, ρ

3
from D8, and there are 6 rotations of the cube that move F to each of the six faces of C. Combining

these gives the 24 rotations of our cube. Hence,

∣Rot(C)∣ = 24.

It’s hard to picture these rotations. Let’s try to describe them another way — this will be easier since we
know we are looking for exactly 24 rotations. Here are some symmetries in Rot(C):

⟲

(B) & (C)

⟲

(D)

⟲
(E)

(A) One identity rotation that does nothing

(Fixes all faces, corners, edges)

(B) Six 90
0
face rotations (One per face. Induces a 270

0
rotation for opposite face)

(Fixes precisely two faces, and no corners, no edges)

(C) Three 180
0
face rotations (One per face but this double-counts so 6/2 = 3)

(Fixes precisely two faces, and no corners, no edges)

(D) Eight 120
0
corner rotations (One per corner. Induces a 240

0
rotation for opposite corner)

(Fixes precisely two corners)

(E) Six 180
0
edge rotations, rotating an edge about it’s midpoint

(Fixes precisely two edges)

These are all clearly different (because of the things they fix/don’t fix, etc) and there are 24 of them, so they
must be all of Rot(C).
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3.3.1 Handout for Section 3.3

Example 3.3.3. We have seen finite isometry groups. Here is an infinite one. Let S be the following infinite
shape, and let G be the symmetry group of isometries of S.
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Note that G contains a translation, for example:

ρ = (. . . a−2 a−1 a0 a1 a2 . . .)(. . . b−2 b−1 b0 b1 b2 . . .)

It also contains three types of reflections: a reflection through a horizontal line:

σ = ⋯(a−2 b−2)(a−1 b−1)(a0 b0)(a1 b1)(a2 b2)⋯

and a vertical reflection through an edge:

θ1 = (a−1 a1)(b−1 b1)(a−2 a2)(b−2 b2)⋯

and a vertical reflection not through an edge:

θ2 = ⋯(a−1 a0)(b−1 b0)(a−2 a1)(b−2 b1)(a−3 a2)(b−3 b2)⋯

It also has other translations, but these are all obviously powers of ρ. It also has other reflections, but these
are all obviously obtained by combining powers of ρ with θ1 and θ2.
Hence one can deduce that G = ⟨ρ, σ, θ1, θ2⟩.


