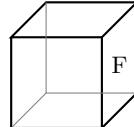


3.3 Symmetry groups of more general shapes

Definition 3.3.1. In fact, if we are given any shape Π in \mathbb{R}^n , its symmetries (distance-preserving maps from \mathbb{R}^n to \mathbb{R}^n that send Π to Π) form a group called the *symmetry group* of Π , which we denote in this course by $\text{Isom}(\Pi)$. The shape Π might not have any corners, but if we take X to be all the points on its surface then the symmetry group of Π is a subgroup of $\text{Sym}(X)$.

Maps from \mathbb{R}^n to \mathbb{R}^n that preserve distance are called *isometries*. Many symmetry groups consist of isometries. For this reason we will often say the *symmetry group of isometries* of Π instead of the *symmetry group of* Π .

Example 3.3.2. Let G be the symmetry group of isometries of a cube \mathcal{C} . What does it look like?

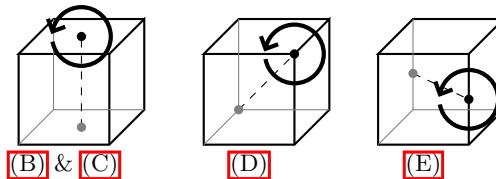


- Notice that any symmetry of a cube is a permutation of its corners
- Choose a face F of the cube. Notice that any permutation of the corners of the cube is completely determined by what happens to the corners of F .
- The symmetry group of F is D_8 (because it is a square)
- There are 6 possible faces that F could be sent to. These can be achieved by 3-dimensional rotations of the cube. Let's call these rotations R_1, \dots, R_6 (where R_1 is the trivial rotation)
- By applying a symmetry from D_8 to F , and then applying one of R_1, \dots, R_6 , we can achieve every symmetry of our cube, and since all these send the corners of F to different positions, they are all different symmetries of the cube
- Hence there are $6 \times |D_8| = 48$ symmetries to the cube, and it's symmetry group is: $\text{Isom}(\mathcal{C}) = D_8 R_1 \cup \dots \cup D_8 R_6$. Some of these symmetries are reflections.

There is a natural subgroup of $\text{Isom}(\mathcal{C})$: the group $\text{Rot}(\mathcal{C})$ of rotations of \mathcal{C} . Our face F has the 4 rotations e, ρ, ρ^2, ρ^3 from D_8 , and there are 6 rotations of the cube that move F to each of the six faces of \mathcal{C} . Combining these gives the 24 rotations of our cube. Hence,

$$|\text{Rot}(\mathcal{C})| = 24.$$

It's hard to picture these rotations. Let's try to describe them another way — this will be easier since we know we are looking for exactly 24 rotations. Here are some symmetries in $\text{Rot}(\mathcal{C})$:



(A) One identity rotation that does nothing

(Fixes all faces, corners, edges)

(B) Six 90° face rotations (One per face. Induces a 270° rotation for opposite face)

(Fixes precisely two faces, and no corners, no edges)

(C) Three 180° face rotations (One per face but this double-counts so $6/2 = 3$)

(Fixes precisely two faces, and no corners, no edges)

(D) Eight 120° corner rotations (One per corner. Induces a 240° rotation for opposite corner)

(Fixes precisely two corners)

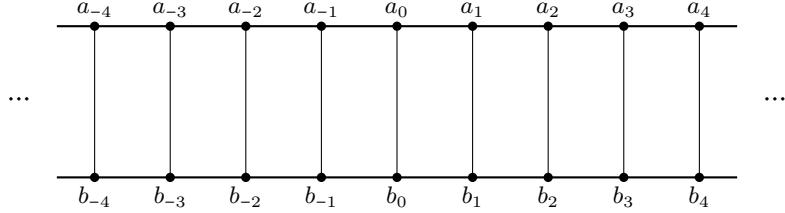
(E) Six 180° edge rotations, rotating an edge about its midpoint

(Fixes precisely two edges)

These are all clearly different (because of the things they fix/don't fix, etc) and there are 24 of them, so they must be all of $\text{Rot}(\mathcal{C})$.

3.3.1 Handout for Section 3.3

Example 3.3.3. We have seen finite isometry groups. Here is an infinite one. Let \mathcal{S} be the following infinite shape, and let G be the symmetry group of isometries of \mathcal{S} .



Note that G contains a translation, for example:

$$\rho = (\dots a_{-2} a_{-1} a_0 a_1 a_2 \dots)(\dots b_{-2} b_{-1} b_0 b_1 b_2 \dots)$$

It also contains three types of reflections: a reflection through a horizontal line:

$$\sigma = \dots (a_{-2} b_{-2})(a_{-1} b_{-1})(a_0 b_0)(a_1 b_1)(a_2 b_2) \dots$$

and a vertical reflection through an edge:

$$\theta_1 = (a_{-1} a_1)(b_{-1} b_1)(a_{-2} a_2)(b_{-2} b_2) \dots$$

and a vertical reflection not through an edge:

$$\theta_2 = \dots (a_{-1} a_0)(b_{-1} b_0)(a_{-2} a_1)(b_{-2} b_1)(a_{-3} a_2)(b_{-3} b_2) \dots$$

It also has other translations, but these are all obviously powers of ρ . It also has other reflections, but these are all obviously obtained by combining powers of ρ with θ_1 and θ_2 .

Hence one can deduce that $G = \langle \rho, \sigma, \theta_1, \theta_2 \rangle$.