

Lecture One

Have to internalise theories before using them - group theories from the start.

- A subsection/topic is one page of lecture notes - three a week. There are then handouts with more examples and proofs, and exercises to be completed in practical sessions /after lectures before the following week.
- *I forgot how much this guy yaps* - don't do daily games before his lectures, do them during >:)

- IT HAS BEEN TWENTY MINUTES WITH NO CONTENT AHHHHHHHHHH
- Nevermind love this guy, waggle waggle
- Just realised Dan does way more work when it's his supervisor doing the lecture; wild.

- Assessment Weighting:** Portfolio (at-home/in-class assessments 1:3 split)
40% / Final Exam 60%

- 1.1. Introduction to Permutations

- **Permutation:** re-arranging a set; a bijection (injective & surjective, one-to-one & onto). Just a complete unique map of one set to another set.
- The set (group) of all permutations of a set, X , is $\text{Sym}(X)$. If X is just $\{1, 2, 3, \dots, n\}$, we write S_n by convention instead.
- The modulus of these sets (S_n), $|S_n|$, is $n!$ - initially n choices, but then just $n-1$ choices moving an element down, then $n-2$ choices through the next, etc.
- For finite X , $|\text{Sym}(X)| = |X|!$ - proven inductively like on the left, for the previous argument.

- Considering a specific example of the former, S_7 , for example an permutation sigma within this set (see to the right) we can find a three distinct cycles.

- These permutations always decompose into cycles, which can simplify our notation a bit: $(1)(2)(3)(4)(5)$ - the three cycles with their elements, in order, and can be read as something repeatable within a bracket.

- By convention, we exclude one-cycles, like the aforementioned (1) or (5) - single element cycles.

- Hence for our example, sigma would be $(2)(3)(4)(5)$ in S_7 and excluded numbers are "fixed" (one cycles).

- Whenever he says six-seven I get naam flashbacks

- Another more complex example (see left) exemplifies the usefulness of the new notation.

- NOTE: within permutations it's left \rightarrow right, but when they're written next to each other then you operate BETWEEN permutations right \rightarrow left. (maybe?? idk he keeps saying he'll go back to it, adhd ahh guy)

- **NOTATION NOTE:** We write sigma x instead of sigma(x) to separate it from the bijection notation.

- **FORMAL PERMUTATION DEFINITION:** Let a_1, a_2, \dots, a_r be distinct elements of a set X . Then $\sigma = (a_1, a_2, \dots, a_r)$ is the permutation of X sending $a_1 \rightarrow a_2, a_2 \rightarrow a_3, \dots, a_r \rightarrow a_1$, and fixing everything in $X \setminus \{a_1, a_2, \dots, a_r\}$. This sigma is called a **cycle of length r**.

- These notes are gonna be annoying to sort, he's so all over the place grr

- **Pairwise Disjoint Definition:** A collection of cycles in $\text{Sym}(X)$ is disjoint (NOTHING IN COMMON) if no element in X appears in two or more of them.

- For example, cycles $(1 2 3)$ and $(4 7 5)$ are disjoint, but not $(1 2 3)$ and $(4 3 7 5)$.

- **Uh oh controversial remark (APPARENTLY VERY IMPORTANT):** $(1 2 3)$ and $(3 1 2)$ are identical. YEAH DUH NOT VERY CONTROVERSIAL - just start with lowest num by convention to make comparison easier.

- 1.2. Products of Permutations

- **Definition:** Let sigma and rho be permutations of a set X . The product sigma rho means (see right). Essentially, work right \rightarrow left, sort of like functions: $\sin \cos 30 \rightarrow \sin(\cos 30)$.

- This definition is by convention which conflicts between academics - look into this (!!)

- "it's definitely easier to see more do it because I'll waffle" - yeah we know bucko

- oh it's just like $\sigma(\rho(1 2 3 4 5 \dots N))$ where N is from S_N , work within cycles too to make it easier

- like $\sigma = (1 2 3)$ and $\rho = (1 5 3 4)$ in S_6 , given $\sigma \rho$, becomes:

$$\sigma \rho = \sigma(5) = 5$$

$$\sigma \rho = \sigma(3) = 1$$

$$\sigma \rho = \sigma(5) = 5 \text{ CYCLE: } (1 5)$$

- Then keep going for the next cycle(s), now starting at 2...

$$\sigma \rho = \sigma(2) = 3$$

$$\sigma \rho = \sigma(4) = 2$$

$$\sigma \rho = \sigma(2) = 3 \text{ CYCLE: } (2 3 4)$$

- Then the last one is (6), fixed, so the final answer is: $\sigma \rho = (1 5)(2 3 4)(6)$.

- Like composing functions - light work.

- ew I just realised he writes tau really weird

- Another example, $\sigma = (1 2)$, $\rho = (2 3)$, $\tau = (3 5) \dots$

$$\sigma \rho \tau = (1 2)(2 3)(3 5) 1 = 2 - \text{feeding the number through the cycles right } \rightarrow \text{left}$$

$$\sigma \rho \tau = (1 2)(2 3)(3 5) 2 = 3$$

$$\sigma \rho \tau = (1 2)(2 3)(3 5) 3 = 5$$

$$\sigma \rho \tau = (1 2)(2 3)(3 5) 5 = 1 \text{ CYCLE: } (1 2 3 5)$$

- $(1 2 3 5)(4)$.

- **YET ANOTHER EXAMPLE:** $(3 5)(2 4 6 8)(2 3 4) = ?$

$(1)(2 5 3 6 8)(4)(7)$ - directly found by plugging in numbers in math head.

- is kinda like simplifying permutations?

- **YIPPEEEEEE IT'S OVER >))))))**