

1.4 Exercises 1- Exercises on permutations

(S)

Question 1.4.1. (a) Write the following permutation as a product of disjoint cycles:

$$\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 4 & 7 & 2 & 1 & 5 & 6 & 3 \end{array}$$

(b) Write the following permutation as a product of disjoint cycles:

$$\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 3 & 5 & 1 & 4 & 2 \end{array}$$

(c) Write the following permutation out in full (using the above arrow notation):

$$(1\ 7\ 2\ 11\ 9)(4\ 10\ 5)(3\ 8\ 6) \in S_{12}$$

Question 1.4.2. Let $g = (1\ 4\ 2\ 7\ 8)$, $h = (1\ 4\ 5)$ and $k = (5\ 7\ 9)(1\ 3\ 2)$. Write the following as a product of disjoint cycles.

(a) k^{-1}	(Check your answer by calculating kk^{-1})
(b) ghk	
(c) $k^{-1}ghk$	

Question 1.4.3. The *order* of a permutation σ is written $o(\sigma)$, and is defined to be the smallest natural number $n \geq 1$ such that $\sigma^n = e$. E.g. $o((1\ 2\ 3)) = 3$ and $o(e) = 1$. We will discuss the order of group elements in more detail later in the course, but for now try to answer the following questions.

- (a) What is the order of the permutation $(1\ 2\ 3\ 4\ 5)$?
- (b) What is the order of the permutation $(1\ 5\ 7)(2\ 3\ 6)$?
- (c) What is the order of the permutation $(1\ 3\ 5)(2\ 4)$?
- (d) Find an element of S_{10} with order 15.
- (e) Is there an element of S_{10} with order 19? If so, find it; if not, why not?
- (f) Suppose a permutation $g \in S_n$ is written as a product of disjoint r_i -cycles,

$$g = c_1 c_2 \cdots c_m.$$

Can you find a formula to calculate $o(g)$? Can you prove your formula is correct?

[Hint: first try to work out a formula for the order of a cycle of length r_i .]

Question 1.4.4. Find a permutation $\sigma \in S_4$ that satisfies the following permutation equation:

$$(1\ 3\ 2)\sigma = (1\ 2)(3\ 4)$$

Question 1.4.5. Find a permutation $\sigma \in S_7$ that satisfies the following permutation equation:

$$(1\ 3\ 2)(5\ 7\ 4)\sigma = (1\ 2)(3\ 4)$$

Question 1.4.6. Find a permutation $\sigma \in S_9$ that satisfies the following permutation equation:

$$(1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9)\sigma = (9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1)$$