

3.4 Exercises 3- Exercises on groups arising from geometry

(S)

Question 3.4.1. (Quick recall question) Find a permutation $\sigma \in S_9$ that satisfies the following equation: $(1\ 2\ 3)(4\ 5\ 6\ 7\ 8) = (1\ 5\ 7\ 8)\sigma(1\ 3\ 4)$.

Question 3.4.2. Consider the dihedral group D_{2n} . In the usual notation for dihedral groups, ρ is an anti-clockwise rotation by $\frac{2\pi}{n}$ and σ is a reflection.

Prove that $\rho\sigma = \sigma\rho^{-1} = \sigma\rho^{n-1}$.

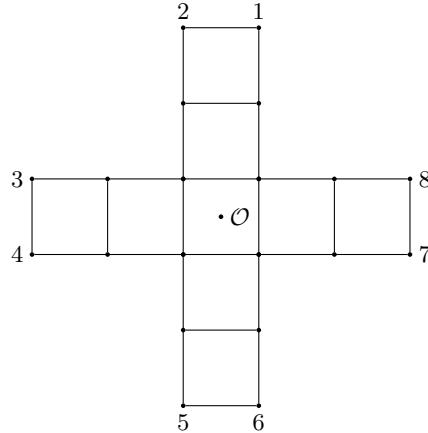
[Hint: What is the order of $\rho\sigma$? What is the inverse of $\rho\sigma$?]

Question 3.4.3. Consider the dihedral group D_{10} . It is the collection of symmetries of a pentagon. In the usual notation for dihedral groups, label the corners 1–5 anticlockwise and take ρ to be an anticlockwise rotation by $\frac{2\pi}{5}$, and σ to be a reflection through the line of symmetry that passes through the corner labelled 1.

- (a) Write down, using cycle notation, the elements in D_{10} . [Hint: draw a diagram]
- (b) Verify that the elements of D_{10} can be written as $\{e, \rho, \rho^2, \rho^3, \rho^4, \sigma, \sigma\rho, \sigma\rho^2, \sigma\rho^3, \sigma\rho^4\}$, where all the rotations are of the form ρ^i and all the reflections are of the form $\sigma\rho^i$.

Remark: In the near future, we will use Lagrange's Theorem to quickly prove that every dihedral group D_{2n} can be written as $\{e, \rho, \rho^2, \dots, \rho^{n-1}, \sigma, \sigma\rho, \sigma\rho^2, \dots, \sigma\rho^{n-1}\}$, where the rotations are of the form ρ^i and the reflections are of the form $\sigma\rho^i$.

Question 3.4.4. Consider the following shape \mathcal{S} (drawn in the Euclidean plane with centre at the origin \mathcal{O}), whose corners have been labelled 1, 2, ..., 8 as shown.



The symmetry group of isometries of \mathcal{S} can be thought of as a subgroup of S_8 . Write down (in cycle notation) all elements in the symmetry group of \mathcal{S} .

Question 3.4.5. Draw an example of a shape \mathcal{S} *that is not a hexagon*, whose symmetry group of isometries is isomorphic to D_{12} .

Question 3.4.6. Let ρ and σ be (respectively) a nontrivial rotation and reflection in D_{10} . In lectures, we will soon see that $\langle \rho, \sigma \rangle$ means the smallest subgroup of D_{10} containing both ρ and σ .

Using the following two facts, show that $\langle \rho, \sigma \rangle = D_{10}$.

- (i) $D_{10} = \{e, \rho, \rho^2, \rho^3, \rho^4, \sigma, \sigma\rho, \sigma\rho^2, \sigma\rho^3, \sigma\rho^4\}$
- (ii) $\rho\sigma = \sigma\rho^{-1}$