
Numerical Methods

Bart Vorselaars

February 2, 2026

Contents

1 Numerical Methods - MTH3007 2

1.1 Assignments . 3

1.2 Outline syllabus second term . 3

1.3 Learning outcomes . 3

1.4 Literature . 3

1.5 Lecture notes . 4

2 Algorithms and programming languages 4

2.1 Introduction to Python . 4

2.2 Accessing Python . 4

3 Approximations and errors 5

3.1 Order of magnitude . 5

3.1.1 Example . 5

3.2 Absolute and relative error . 6

3.2.1 Example . 6

1

4 Differential equations 9

4.1 One vs multiple variables . 9

4.2 Order of a differential equation . 9

4.3 Real-world examples . 10

4.4 Side conditions . 11

4.4.1 Initial value problems . 11

4.4.2 Classical initial value problems . 12

4.4.3 Boundary value problem . 12

5 Finite difference method 12

5.1 Comparison derivative vs finite difference . 12

6 Explicit Euler method 13

6.1 Explicit Euler method for initial value problem . 14

6.1.1 Example Euler forward method for 1st order ODE 15

6.1.2 Example code Euler forward method . 16

6.1.3 Program for storing the whole function . 16

6.1.4 Result whole function . 16

6.2 Error in approximation due to truncation: local error 17

6.3 Error in approximation: global truncation error . 18

6.4 Result error explicit Euler method . 19

6.5 That’s it? . 21

6.6 Example explicit Euler . 21

6.7 Program . 21

6.8 Result . 21

6.9 Result vs timestep . 23

7 Implicit Euler method 23

7.1 implicit vs explicit . 23

7.2 Precursor . 24

7.3 Algorithm implicit Euler method for IVP . 25

7.3.1 Why is it called backward? . 25

7.4 Example implicit Euler . 26

7.5 Result error in solution vs timestep . 27

8 Exercises session 1 27

Index 29

1 Numerical Methods - MTH3007

Lecturer second term: B. Vorselaars

• 1.5 hours/week

• 15 credit module: 150 learning hours. Approx. 6 hours/week.

• If anything is unclear, please ask questions (during or after the lab session)

2

1.1 Assignments

The assignments follows a similar structure as in the first term.

• Weekly exercises. They don’t count towards your mark for this module, but are essential in

the learning process and for succesfully completing the final in-class test. These need to be

completed since the developed code can be re-used during the in-class test.

• One of them will be marked, but it counts for 0%. It is expected that this is completed

before the next session, and a pass/fail mark will be given to them during the lab session.

Please raise your hand during the lab session and me or a demonstrator will look whether

the question has been answered to a good standard. If not, you have another opportunity.

– Deadline this term: TBC

• Note: the students that passed the last one had a factor 8 less chance of failing the final-in-

class test!

• Final in-class test: date is 12/5/2026 (TBC). This counts 50% towards the final mark. You

are allowed to access Blackboard and your own set of notes and programme codes (e.g., as

part of your logbook).

1.2 Outline syllabus second term

• Numerical solution of ordinary differential equations

• Numerical solution of partial differential equations

• Elements of stochastic methods

These require more background knowledge, hence lecturing part may typically be longer than

during the first term.

1.3 Learning outcomes

1. Apply numerical methods for curve fitting and solving various equations

2. Critically analyze applied mathematical problems, choose and apply appropriate numerical

methods for their solution

3. Implement numerical solutions in efficient computer codes using a high level computer lan-

guage

1.4 Literature

A large part of the syllabus is covered in:

• Numerical Methods for Engineers, 7th edition, by S. C. Chapra and R. P. Canale, McGraw-

Hill Education, New York, USA (2015)

Some elements are covered in:

• An Introduction to Partial Differential Equations, by Y. Pinchover and J. Rubinstein, Cam-

bridge University Press, Cambridge, UK (2005)

• Numerical Methods for Engineers and Scientists, 2nd edition, by J. D. Hoffman, CRC Press,

Boca Raton, USA (2001)

3

• Numerical Recipes: The Art of Scientific Computing, 3rd edition, by W. H. Press, S. A.

Teukolsky, W. T. Vetterling and B. P. Flannery, Cambridge University Press, Cambridge, UK

(2007)

• Advanced Engineering Mathematics, by E. Kreyszig, John Wiley and Sons, USA (2006 or

2011)

Furthermore, some images are taken from Wikipedia.

1.5 Lecture notes

In the lecture notes some concepts are bold. Apart from the author names in the previous slide

these ideally have to be learned by heart. They also appear in the index of the lecture notes (at

the end).

2 Algorithms and programming languages

We will be mostly using Python (either pure, or within a Jupyter notebook) to present the algoritms.

For the algorithms that I present in this term, a fast programming language is important (for prac-

tical calculations), but not needed for learning the algorithms. Therefore I strongly recommend to

use a higher-level programming language such as Python or Matlab, since these languages also

allow you analyze the algorithms more straightforwardly as opposed to, e.g., C or C++.

2.1 Introduction to Python

Several websites provide basic introductions to Python - https://www.w3schools.com/python/default.asp

- https://www.codecademy.com/learn/learn-python-3 - https://campus.datacamp.com/courses/intro-

to-python-for-data-science/chapter-1-python-basics?ex=1

An introduction to Python using a game is https://codecombat.com/

A slightly more advanced python introduction is the tutorial on http://codingbat.com/python

https://nbviewer.jupyter.org/github/barbagroup/CFDPython/blob/master/lessons/00_Quick_Python_Intro.ipynb

is an introduction to Python with numerical methods in mind.

2.2 Accessing Python

The following popular options are available: - Sypder (IDE for Python, allows plotting too)

can be downloaded and installed on your own computer via https://www.spyder-ide.org/.

- Visual Studio Code (IDE for many programming languages, including Python). See

https://code.visualstudio.com/.

There are also the following online options: - Ipython via

https://jupyterlite.readthedocs.io/en/stable/try/tree (no sign-up required) -

Ipython via https://cocalc.com/ (sign-up required) - Python with plotting us-

ing https://trinket.io/embed/python3/a5bd54189b - Python without plotting

https://repl.it/languages/python3

4

3 Approximations and errors

In Numerical Methods it is important to know the accuracy of your method.

Some concepts that play a role are the following

3.1 Order of magnitude

Definition: A function f(h) is said to be the order of magnitude g(h) as h → 0, where g(h) is a

nonnegative function, if

lim
h→0

f(h)

g(h)
= constant

where the constant is a finite number (which could also be zero).

This is written in the O (aka ‘big O’) notation as f(h) = O(g(h)) (h → 0).

Typically g(h) = hn.

Often the limit value for h (in this case zero, since h → 0) is not mentioned explicitly but is clear

from the context. Note that the limit value could also be a non-zero number (h → a) or even ∞
(h → ∞).

3.1.1 Example

The Taylor series of the cosine function cos(x) around x = 0 is

1−
1

2
x2 +

1

24
x4 + . . .+

(−1)n

(2n)!
x2n + . . .

Hence the difference between cos(x) and 1− 1
2x

2 around x = 0 is 1
24x

4 + In the limit of x → 0
the leading order term is 1

24x
4 so one can write

cos(x) = 1−
1

2
x2 +O(x4)

since

lim
x→0

cos(x)− (1− 1
2x

2)

x4
=

1

24

and 1/24 is indeed a constant.

The benefit of using the O notation is that one actually doesn’t have to determine the constant

(which is often not so important anyway), just the fact that there is a constant.

One could even write

cos(x) = 1−
1

2
x2 +O(x3)

since

lim
x→0

cos(x)− (1− 1
2x

2)

x3
= 0

and zero is also a constant.

5

Note that

lim
x→0

cos(x)− (1− 1
2x

2)

x5
= lim

x→0

1
24x

4

x5

= lim
x→0

1

24x

= ∞

This limit is therefore not a constant but diverges, and hence the remaining term is not O(x5).

3.2 Absolute and relative error

Given some approximation vapprox of a quantity v, the absolute error is defined as

ϵ = |v − vapprox|

and the relative error

η =
|v − vapprox|

|v|
=

ϵ

|v|

The relative error only works for non-zero values of v.

3.2.1 Example

For the approximation of the cos(x) by 1− 1
2x

2 the absolute error for x = 0.3 is 3.36× 10−4. In this

example the value is close to 1, so the relative error is almost the same; 3.52× 10−4.

6

The difference between the two curves is then the absolute error

If we plot this on a double-logarithmic scale, we can verify the power 4, in x4, as follows

The first non-zero term for the error is

ϵ =
1

24
x4

and hence

log(ϵ) = 4 log(x)− log(24)

so if log(ϵ) is plotted vs log(x), the slope is 4, when approaching x → 0.

So ϵ = O(x4)

7

So ϵ = O(x4)

8

4 Differential equations

See module Differential Equations. Short recap:

Differential equation (DE): An equation involving derivatives of a function, such as
df(x)
dx

4.1 One vs multiple variables

• Ordinary differential equation (ODE): the derivative(s) of the unknown function is with

respect to one independent variable only.

Example

d2y(t)

dt2
= f(t, y(t))

• Partial differential equation (PDE): the (partial) derivative(s) of the function is with respect

to multiple independent variables.

Example

∂y(t, v)

∂t
+

∂3y(t, v)

∂v3
= f(t) + g(v)

4.2 Order of a differential equation

The order of a differential equation is the highest occuring derivative in the equation.

• Example first order ODE:

dy(t)

dt
= f(t, y(t))

• Examples second order ODE:

d2y(t)

dt2
= f

(

t, y(t),
dy(t)

dt

)

d2y(t)

dt2
− 27

dy(t)

dt
= y(t)3 − 7 exp(t)

9

4.3 Real-world examples

Differential equations appear in many fields:

• Pure and applied mathematics: to study their properties, exact solution methods for

linear/non-linear equations (Lax pairs), uniqueness, etc. Example: Navier–Stokes existence

and smoothness is one of the Millennium Prize Problems by the Clay Mathematics Institute.

If you solve it you will win 1 million dollar:

∂v

∂t
+ (v · ∇)v = −∇p+ ν∆v + f(x, t)

with ∇ the gradient and ∆ ≡ ∇2 the Laplacian.

• Physics: Examples are Newton’s law, Euler-Lagrange, Hamilton equation, diffusion equation,

and the Schrodinger equation:

iℏ
∂Ψ(r, t)

∂t
=

(

−
ℏ
2

2m
∇2 + V (r, t)

)

Ψ(r, t)

with Ψ(r, t) the wave function

• Chemistry : Examples are chemical reaction rate equations such as for the simple reaction

A
k1→ B

k2→ C:

−
dcA
dt

= k1cA

dcc
dt

= k2cB = k2(c
0
A − cA − cC)

• Biology : Examples are predator-prey (x-y) equations such as

dx

dt
= ax− bxy

dy

dt
= dxy − cy

• Economics: Example is the Solow–Swan ODE for modelling capital k

dk(t)

dt
= f(k(t), t)− δ k(t)

• Finance: Black-Scholes PDE, for modelling options pricing

∂V (S, t)

∂t
+

1

2
σ2S2∂

2V (S, t)

∂S2
= rV (S, t)− rS

∂V (S, t)

∂S

with V the option price and S the stock price.

Main point: more often than not an analytical solution is not possible.

At the end of this term you may be able to solve some or even all of these differential equations

numerically (with the help of some extra self-study).

10

4.4 Side conditions

A differential equation sometimes does not have a unique solution; there could be a family solution

with a parameter.

Example

df(x)

dx
= 0

The solution to this DE is f(x) = c with c an arbitrary parameter.

For such DE’s often extra side conditions are imposed. This will make the solution unique.

Example

df(x)

dx
= 0

f(0) = 1

Now the solution to the first equation is f(x) = c. Imposing the extra condition we have f(0) = 1,

so that the solution is f(x) = 1.

4.4.1 Initial value problems

An initial value problem (IVP) is a differential equation for which the side conditions are all given

at the same point. Such side conditions are also known as initial conditions.

Example:

df(x)

dx
= 0

f(0) = 1

with solution f(x) = 1

Example:

d2f(x)

dx2
= 0

f(0) = 1

f(0)′ = 1

with solution f(x) = c1x + c2 and using the initial conditions this simplifies to f(x) = 1 + x. Here

the prime, ′, denotes differentiation.

11

4.4.2 Classical initial value problems

The classical initial value problem is to find a function y(t), which satisfies the differential equa-

tion

dy(t)

dt
= g(t, y(t))

and takes the initial value y(t0) = y0.

4.4.3 Boundary value problem

The following differential equation is not an intial value problem (IVP), since it has conditions at

two different points: xL and xR

d2f(x)

dx2
= g(x)

f(xL) = 0.2

f(xR)
′ = 1.5

with xL ̸= xR. This is a boundary value problem.

5 Finite difference method

Differential equations consist of derivatives, such as the first order derivative:

df(x)

dx
= lim

h→0

f(x+ h)− f(x)

h

The finite difference method (FDM) is based on the idea to approximate the derivatives by finite

differences. For example:

df(x)

dx
≈

f(x+∆x)− f(x)

∆x

where ∆x is a small but not infinitesimal number.

5.1 Comparison derivative vs finite difference

The slope of the tangent is given by the derivative.

The finite difference method is an approximation of the derivative.

We can compare the two by plotting the tangent (exact) with a secant line whose slope is given by

the FDM.

12

A secant is a line that intersects a curve in at least two (distinct) points. A tangent is a line that just

touches a point of a curve, so it has the same derivative at that point.

The (blue) tangent of the (black) curve is approximated by the (red) secant. The approximation

becomes better, if the step ∆x becomes smaller.

6 Explicit Euler method

The finite difference method can be used to solve ODEs. The Euler method is an example of a

FDM.

The first step is replacing the derivatives by finite differences.

So in the ODE

df(x)

dx
= g(x, f(x))

we make the replacement

df(x)

dx
≈

f(x+∆x)− f(x)

∆x

and hence

f(x+∆x)− f(x)

∆x
≈ g(x, f(x))

13

6.1 Explicit Euler method for initial value problem

For an initial value problem the ODE can be solved as follows. Rewrite

f(x+∆x)− f(x)

∆x
≈ g(x, f(x))

as

f(x+∆x)approx ≈ f(x) + ∆x · g(x, f(x))

This is called the explicit Euler method, aka the forward Euler method for the ODE f(x)′ =
g(x, f(x)). This allows us to approximate the value of f(x +∆x) by only having information on f
at the position x.

Since the initial value is given, we can construct the whole solution, by doing it step-by-step (iter-

atively applying the equation). Denote the number of steps so far by i and assume we start at

xstart = x0:

x0 → x0 +∆x → x0 + 2∆x → x0 + 3∆x → . . . → x0 + i∆x → . . .

x0 → x1 → x2 → x3 → . . . → xi → . . .

f(x0) → f(x0 +∆x) → f(x0 + 2∆x) → f(x0 + 3∆x) → . . . → f(x0 + i∆x) → . . .

f0 → f1 → f2 → f3 → . . . → fi → . . .

14

Lets say we want to integrate the ODE from xstart to xend. The total number of integration steps

Nint is then

Nint = |xend − xstart|/∆x

and hence

xend ≡ xNint
= x0 +Nint∆x

A smaller ∆x will improve the accuracy, but at the expense of doing more calculations, Nint.

6.1.1 Example Euler forward method for 1st order ODE

Let us solve the ODE
dy(t)

dt
= y(t)

subject to an initial condition y(0) = y0. Analytical solution is known: y = y0 exp(t). This allows us

to check the integration error.

Replacing derivative in the ODE by finite differences:

y(t+∆t)− y(t)

∆t
≈ y(t)

and rewriting this equation by writing y(t+∆t) as a function of the rest:

y(t+∆t) ≈ y(t) + ∆ty(t) = (1 + ∆t)y(t)

We can repeat this algorithm to get to larger and larger times:

y(t+ 2∆t) ≈ (1 + ∆t)y(t+∆t)

≈ (1 + ∆t)(1 + ∆t)y(t)

and

y(t+ 3∆t) ≈ (1 + ∆t)y(t+ 2∆t)

≈ (1 + ∆t)(1 + ∆t)y(t+∆t)

≈ (1 + ∆t)(1 + ∆t)(1 + ∆t)y(t)

etc.

Here the time-dependence for the discrete scheme is obvious and can just be written as

y(t+Nint∆t) = (1 + ∆t)Ninty(t)

but such simple expressions are not always available for other DEs.

15

6.1.2 Example code Euler forward method

Hence in order to repeat the step

y(t+∆t) ≈ y(t) + ∆ty(t) = (1 + ∆t)y(t) (*)

many times we can use a computer. We can convert eq. (*) to variables that can be used in a

programming language as

ynext=(1+dt)*ynow

where ynext stands for y(t+∆t), and ynow for y(t).

For the next time step, y(t+ 2∆t), we update ynow to be ynext and recalculate ynext.

In Python code this becomes

y0=1.0                                      #  initial  condition.  Assume  y(0)=1.0

t=0.0  #  start  time.  Use  0.0  for  floats

dt=0.01                                    #  integration  time  step

tmax=10.0                                #  end  time

Nint=int(round(tmax/dt))  #  number  of  integration  steps

ynow=y0

for  n  in  range(Nint):        #  loop  from  0  to  but  not  including  Nint

     ynext=(1+dt)*ynow          #  calculate  y(t+dt)

     #  next  step:  ynext  becomes  ynow,  t  increases

     ynow=ynext

     t=t+dt

6.1.3 Program for storing the whole function

Our program can be rewritten to store all intermediate values:

y0=1.0              #  start  value  for  y

dt=0.01            #  integration  step

t0=0.0              #  start  time

tmax=10.0        #  end  time

Nint=int(round(tmax/dt))

y=np.zeros(Nint+1)      #  number  of  points  is  number  of  integration  steps  +  1

t=np.zeros(Nint+1)

y[0]=y0

t[0]=t0

for  n  in  range(Nint):

       t[n+1]=t[n]+dt

       y[n+1]=y[n]*(1+dt)

6.1.4 Result whole function

The result for y(t) is then as follows. Note that using ∆t = 0.01 gives a good agreement with the

analytical solution.

16

6.2 Error in approximation due to truncation: local error

General Taylor series

f(x+∆x)exact = f(x) + ∆xf ′(x) + ∆x2f ′′(x)/2! +O(∆x3)

For our ODE we have that the derivative is given by
df(x)
dx

= g(x, f(x)) with g a known function, so

for the Euler method this gives

f(x+∆x)approx ≈ f(x) + ∆x · g(x, f(x))

and the difference is

f(x+∆x)approx − f(x+∆x)exact = ∆x2f ′′(x)/2! +O(∆x3)

where we have used g(x, f(x)) = f ′(x).

17

So the error due to the truncation of the Taylor series in f(x+∆x) is for small ∆x proportional to

∆x2 (since ∆x3 is even smaller and can be neglected).

The local truncation error, which is the error after one integration step due to truncating the

Taylor series, is therefore O(∆x2) for the Euler method.

6.3 Error in approximation: global truncation error

Assume we want to integrate the ODE from xstart to xend with Nint = (xend−xstart)/∆x integration

steps.

Intuitively the global truncation error, which is the error due to truncation after integrating over

the whole interval, is therefore in this case Nint times the local truncation error (the error after one

step).

For the Euler method we have that the local error is O(∆x2), and hence the global error is

NintO(∆x2) = |xend−xstart|
∆x

·O(∆x2) = |xend − xstart|O(∆x), so proportional to ∆x, or O(∆x).

The order of a method is given by how the global truncation error varies with the integration step.

For the Euler method the error is therefore first order in the integration step ∆x: the Euler method

is a first order algorithm.

Argument can be made more rigorous, but result for the order stays the same.

18

6.4 Result error explicit Euler method

We can estimate the error in the algorithm by comparing the exact value for y(tmax) = exp(tmax)
(which equals approximately 22026 for tmax = 10) with the approximate value as a function of the

integration time step.

Repeating the whole integration for 3 different integration steps (0.1, 0.01 and 0.001) gives

19

The error between the finite difference scheme and the Euler method is the difference between

the blue and black curve.

We observe that the error decreases linearly with decreasing ∆t: the Euler method is indeed a

first order method.

In this case we can also calculate the error analytically.

The analytical result for y(t) is

y(t)exact = exp(t)

while the forward Euler method gives

y(t)approx = (1 +∆t)n

= (1 +∆t)
t

∆t

The error in the approximation, the difference, is therefore

y(t)exact − y(t)approx = exp(t)− (1 + ∆t)
t

∆t

= . . . =
t

2
exp(t)∆t+O(∆t2)

which is indeed proportional to ∆t in leading order at t = tmax.

20

6.5 That’s it?

• No problems for any differential equation?

• Can we do better than O(∆t) for the global truncation error?

6.6 Example explicit Euler

Let us solve the ODE
dy(t)

dt
= −ay(t)

subject to an initial condition y(0) = y0 and with a > 0.

Analytical solution is known, y = y0 exp(−at), so this allows us to check the integration error.

6.7 Program

y0=1.0

a=20.0    #  Extra  variable  a

dt=0.01

t=0.0

tmax=10.0

Nint=int(round(tmax/dt))

ynow=y0

for  n  in  range(Nint):

       #  Difference  to  previous  ODE:  -a  instead  of  +1

       ynext=(1-a*dt)*ynow

       ynow=ynext

       t=t+dt

6.8 Result

Solution y(t) of the ODE ẏ = −ay

21

22

The explicit Euler algorithm becomes unstable for large time step!

6.9 Result vs timestep

Let us now plot the resulting error at t = tmax, again repeating the same calculation for various

values of ∆t

The explict Euler algorithm becomes unstable for a∆t > 2 (second, dotted, vertical line). It shows

oscillatory behaviour for a∆t > 1 (first vertical line).

7 Implicit Euler method

7.1 implicit vs explicit

An implicit relation is a relation where a dependent variable is not isolated on one side of the

equation. An explicit relation is a relation where a dependent variable is isolated on one side.

For example

x2 + xy − y2 = 1

23

is an implicit relation for y, while

y = x2 + 2x− 4

is an explicit relation for y.

Sometimes it is rather easy to convert an implicit relation into an explicit one

x+ y = 1

is implicit in y. Bringing x to the RHS turns this into an explicit relation. Hence

y = 1− x

is explicit in y.

A slightly more difficult example is the following implicit relation

x2 + y2 = 1

The accompanying explicit relation is

y = ±
√

1− x2

It is not always possible to convert an implicit relation into an explicit using elementary functions.

7.2 Precursor

For the explicit Euler method we saw that we replaced the derivative by

df(x)

dx
≈

f(x+∆x)− f(x)

∆x
(*)

This was inspired by the limit for the derivative,

df(x)

dx
= lim

h→0

f(x+ h)− f(x)

h

Eq. (*) is called a forward difference approximation (FDA), since the derivative is approximated

by the function value at a later/forward point minus the value at the current point.

However, the derivative can also be written in other limits. These other limits give rise to the same

derivative. E.g., replace h by −h:

df(x)

dx
= lim

−h→0

f(x− h)− f(x)

−h

= lim
h→0

f(x)− f(x− h)

h

and the finite difference for this equation is

df(x)

dx
≈

f(x)− f(x−∆x)

∆x
(**)

24

where again ∆x is a small but not infinitesimal number. Eq. (**) is called a backward difference

approximation (BDA), since now the derivative is approximated by the current function value

minus the value at a previous/backward point.

Notice that eq. (**) is not the same as the FDA,
df(x)
dx

≈ f(x+∆x)−f(x)
∆x

.

Only in the limit ∆x → 0 they become equal to each other. Hence they generally give rise to

different numerical schemes.

7.3 Algorithm implicit Euler method for IVP

Given the ODE

dy(t)

dt
= g(t, y(t))

The explicit method is

y(t+∆t)− y(t)

∆t
≈ g(t, y(t))

The implicit Euler method (also known as backward Euler method) is

y(t+∆t)− y(t)

∆t
≈ g(t+∆t, y(t+∆t)) (*)

Notice that now y(t+∆t) also occurs at the right hand side of eq. (*). This means that the equation

is not any more an explicit equation, but an implicit one.

Rewriting gives

y(t+∆t) ≈ y(t) + ∆t · g(t+∆t, y(t+∆t))

In order to determine y at the next time step, y(t+∆t) (LHS), we already have to know y(t+∆t).

If g is linear with y, then it is easy to transform the implicit relation into a explicit one.

If g is non-linear, then it is a bit more tricky. It is an equation containing y(t + ∆t) and could be

solved using a root-finder such as Newton’s method.

7.3.1 Why is it called backward?

The implicit Euler method

y(t+∆t)− y(t)

∆t
≈ g(t+∆t, y(t+∆t))

can be rewritten as

y(t)− y(t−∆t)

∆t
≈ g(t, y(t)) (*)

where we just shifted the time by ∆t backwards. This equation can also be derived by starting

from the backward difference approximation

df(x)

dx
≈

f(x)− f(x−∆x)

∆x
(1)

Notice that now y(t+∆t) also occurs at the right hand side of eq. (*). This means that the equation

is not any more an explicit equation, but an implicit one.

25

7.4 Example implicit Euler

Let us solve the ODE
dy(t)

dt
= −ay(t)

with a > 0 subject to an initial condition y(0) = y0. Analytical solution is known, y = y0 exp(−at),
so this allows us to check integration error.

Replacing by finite differences:

y(t+∆t)− y(t)

∆t
≈ −ay(t+∆t)

Note that this is an implicit relation in y(t + ∆t). However, we can rewrite it in an explicit form by

expressing y(t+∆t) as a function of the rest:

y(t+∆t)(1 + a∆t) ≈ y(t)

or

y(t+∆t) ≈
y(t)

1 + a∆t

In this example no root-finding is needed, since y(t+∆t) can be isolated analytically.

Implicit Euler method is simple to implement for this differential equation. Instead of multiplying y(t)
by (1−a∆t) for the explicit Euler method, we have to divide y(t) by (1+a∆t). In our aforementioned

program this implies replacing (1-a*dt)*ynow by ynow/(1+a*dt). In general the implicit scheme

is more difficult.

26

7.5 Result error in solution vs timestep

8 Exercises session 1

1. What is meant by the following?

• local truncation error

• global truncation error

• order of an algorithm

• finite difference method

2. What is the difference between an implicit and explicit relation?

3. Implement the explicit Euler method in a programming language (preferably Python), and

with it solve the ODE
dy(t)

dt
= bt− ay(t)

The coefficients should be implemented as variables, but take b = 1, a = 22, y(0) = 1,

tmax = 1, and integrate using both ∆t = 0.01 and ∆t = 0.1

4. Implement the implicit Euler method and solve the same ODE.

27

5. The analytical solution is

y(t) = e−at

(

y0 +
b

a2

)

+
bt

a
−

b

a2

Compare the errors for the two algorithms and plot the solution for each of them and the

analytical solution vs time, y(t).

28

Index

6 hours/week, 2

absolute error, 6

backward difference approximation, 25

backward Euler method, 25

big O, 5

bold, 4

boundary value problem, 12

Canale, 3

Chapra, 3

Differential equation, 9

Euler method, 24

explicit Euler method, 14

explicit relation, 23

Final in-class test, 3

finite difference method, 12

first order algorithm, 18

forward difference approximation, 24

forward Euler method, 14

global truncation error, 18

Hoffman, 3

implicit Euler method, 25

implicit relation, 23

initial conditions, 11

initial value problem, 11, 12

Kreyszig, 4

local truncation error, 18

number of steps so far, 14

order, 9

order of a method, 18

order of magnitude, 5

Ordinary differential equation, 9

Partial differential equation, 9

Pinchover, 3

Press, 4

relative error, 6

Rubinstein, 3

side conditions, 11

total number of integration steps, 15

29

	Numerical Methods - MTH3007
	Assignments
	Outline syllabus second term
	Learning outcomes
	Literature
	Lecture notes

	Algorithms and programming languages
	Introduction to Python
	Accessing Python

	Approximations and errors
	Order of magnitude
	Example

	Absolute and relative error
	Example

	Differential equations
	One vs multiple variables
	Order of a differential equation
	Real-world examples
	Side conditions
	Initial value problems
	Classical initial value problems
	Boundary value problem

	Finite difference method
	Comparison derivative vs finite difference

	Explicit Euler method
	Explicit Euler method for initial value problem
	Example Euler forward method for 1st order ODE
	Example code Euler forward method
	Program for storing the whole function
	Result whole function

	Error in approximation due to truncation: local error
	Error in approximation: global truncation error
	Result error explicit Euler method
	That's it?
	Example explicit Euler
	Program
	Result
	Result vs timestep

	Implicit Euler method
	implicit vs explicit
	Precursor
	Algorithm implicit Euler method for IVP
	Why is it called backward?

	Example implicit Euler
	Result error in solution vs timestep

	Exercises session 1
	Index

