RECAP AND SOLUTION PREVIOUS
EXERCISE

EXPLICIT EULER METHOD FOR INITIAL VALUE PROBLEM

Given the ODE

The ODE can be solved as follows. Rewrite

it + AAti —u) g(t,y(t))

as

Y(t + At)approx ~ Y(t) + At - g(t, y(t))

This is called the explicit Euler method, aka the forward Euler method. This allows us to approximate
the value of y(t + At) by only having information on y at the position t.

Since the initial value is given, we can construct the whole solution at the discrete time points, by doing it
step-by-step:

—o—90—90—---—0o—0—0
0 1 2 >N N-1
t,=0 t;=At t,=2At >t ty.,= (N-1)At
to — 11 :tO—I—At%tg :tO—I—ZAt%...%tmaX:tN_l :tO—I—(N—].)At

/) Ax = 0.5

Ax=0.25

global
4 — error

True solution

ALGORITHM IMPLICIT EULER METHOD FOR IVP

Given the ODE

The explicit method is

mt+ﬁ2_y@)%g@wﬂﬂ

The implicit Euler method (also known as backward Euler method) is

y(t + At) — y(t)
At

~ g(t + At, y(t + At)) (*)

Notice that now y(t 4+ At) also occurs at the right hand side of eq. (*). This means that the equation is
not any more an explicit equation, but an implicit one.

Rewriting gives

y(t + At) = y(t) + At - g(t + At, y(t + At))

In order to determine y at the next time step, y(t + At) (LHS), we already have to know y(t + At).
If g is linear with vy, then it is easy to transform the implicit relation into a explicit one.

If g is non-linear, then it is a bit more tricky. It is an equation containing y(t + At) and could be solved
using a root-finder such as Newton's method.

SOLUTIONS

The answers to the conceptual questions can be found in the lecture notes.

SOLUTION PYTHON CODE EXPLICIT EULER

See Blackboard for .py file

import numpy as np
import matplotlib.pyplot as plt

t0=0.0 # start time
tmax=1.0 # end time
dt=0.01

y0=1.0

Nint=int(round((tmax-t@)/dt))

t=np.zeros(Nint+1)

y=np.zeros(Nint+1) # number of points is number of integration steps + 1
Initial condition

t[0]=t0

y[0]=y0

ODE: y(t)'=g(t, y(t))
def g(t, y):

b=1.0

a=22.0

return bxt-axy

integrate the ODT
for n in range(Nint):
tln+1]=t[n]+dt
y[n+1l=y[n]l+ dt * g(t[n], y[n]l) # explicit Euler

Output end point
print("y(t=tmax)=",y[Nint])

DERIVATION FOR IMPLICIT EULER

y(t + At) —y(t)
At

with g(¢,y(t)) = bt — ay(t), and hence g(t + At,y(t + At)) =b- (t + At) —a - y(t + At)

~ g(t + At, y(t + At))

Hence

y(t + At) —y(t)
At

~b-(t+ At) —a-y(t + At)

The equation can be rewritten by isolating y(t + At) to the LHS. The following steps show how to do
this:

y(t + At) ~ y(t) + At - (b- (t + At) — a - y(t + At))
y(t + At)(1+a-At) =~ y(t) + At-b- (t + At)
y(t) + At-b- (t + At)

(1+a- At)

y(t + At) =

In a programming language we could implement this as

ynext=(ynow+dtxbx(t+dt))/(1.0+axdt)

or

y[n+1]=(y[n]+dtxbxt[n+1])/(1.0+axdt)

WRONG DERIVATION
Note that for the explicit Euler method we had

y[n+11=y[nl+dtxg(t[n], y[nl)

It is tempting to use a similar construct for the implicit Euler

y[n+1]=y[nl+dt*g(t[n+1], y[n+1]) # WRONG

This does not work, because we do not know yet y[n+1] and hence y[n+1] can not appear on the
right-hand side of the assignment.

We have to do it explicitly, as is done in the following

y[n+1]=(y[n]+dtxbxt[n+1])/(1.0+axdt) # Correct

and such an equation needs to be derived for each differential equation sepeerately. Hence implicit
methods require a bit more work.

SOLUTION EXERCISE SESSION 1 REGARDING ERROR

Explicit Euler

« At =0.01:y(1) = 0.04338843
e At=0.1:y(1)=6.2479177

Implicit Euler

o At =0.01:y(1) = 0.04338843
« At =0.1:y(1) = 0.04339733

€ = |y (tmax)approx — ¥ (tmax)exact|

tmax=1.0,a=22.0; b=1.0

1021 —— explicit Euler
—— implicit Euler
109 - . P
----- linear
10—2_

=
< 9 9
o ()] o

=

<
-
=
i

USING NUMBERS IN PROGRAMMING
LANGUAGES

Always use integers for quantities you can count: number of integration steps, etc.

Always use floating point numbers for quantities you cannot count.

A 32 bit floating point number is accurate up to around 7 decimal digits (2_23), while a 64 bit floating
point number is accurate up to around 16 decimal digits (2_52). Therefore a 64 bit float is advised.

In Python

a=3

implies that a is an integer (of infinite precision), while

a=3.0

implies that a is a 64 bit float. So one has to be aware of the way of entering numbers.

CONVERTING FLOAT TO INTEGERS AND VICE VERSA

To convert a float, say 3.0, to an integer use

e To round to the nearest number in Python use int(round(...))
e To round towards zero in Pythonuse int(...)

To convert an int, say 2, to a float, use
e Python: float(2) , orjust multiplyby 1.0

In Python, the resulting type can be checked using type.E.g., type(int(3.0)) gives <class
'int'>.

TYPICAL PROGRAMMING MISTAKES

e Using int instead of float or vice versa

e If round is not used, then int(tmax/dt) can be off-by-one! Why? Because tmax/dt could be
either slightly higher than an integer or slightly lower. Example: 1/0.01 ~ 100.00001 or
99.99999. If it is slightly lower it will be rounded down towards the integer below it. This is also a
common mistake. Correct way in Pythonis int(round(tmax/dt)) .

TYPES OF NUMERICAL ERRORS OCCURING
WITH A NUMERICAL METHOD

We distinguish two types of errors

1. Truncation error of the Taylor series for the method (Euler method: truncated after first order)
e Local error (error after one integration step)
e Global error (error after integrating till the end of the interval) 2. Rounding error

The smaller the error, the more accurate the result.

TRUNCATION ERROR EULER METHOD (DISCUSSED BEFORE)
In the Euler method we approximate f(z + Ax) by

this gives the error:
(2 + Az)approx — (T + AZ)exact = Az’ f"(2) /2! + O(Az?)

where we have used g(z, f(x)) = f'(x).

ROUND-OFF ERRORS

The round-off errors arise because of a finite representation of a floating point number in a
programming language. Round-off errors do not only occur for rounding numbers to their integer value,
but also due to rounding a number to a limited fractional value. An example is rounding 7w to 3.1416. Then

7 — 3.1416 ~ —7.346 x 1076.

ROUND-OFF ERROR ILLUSTRATED BY THE EXPLICIT EULER METHOD

€ = |y (tmax)approx — ¥ (tmax)exact|

10-8 -
10-101
10121
10-14 -

=

<
-
h

—— error Euler
---- linear

From At < 10~ the error does not decrease any more with smaller time-step. The reason: limited
accuracy of the 64 bit floating point number is reached. For At ~ 10~ Y the error in the calculation
e~ 107"

The error is much larger than the threshold fora np.float64, ~ 10719, This is caused by the
accumulation of round-off errors due to the many additions of order IV;,;. Since N;,; increases with
smaller At, the error will even increase with smaller At.

However, this is only the case for very small At and in this module the main focus will be on truncation
errors.

HIGHER ORDER INTEGRATION METHODS

Let us shorten the notation a bit: t = ¢; = 1{At, and hence y(t) = y(t;) = y;. For the initial value
problem ODE

y(t) = g(t,y(t))
the (explicit) forward Euler method is then
Vi1 ~ Y + At - g(ts, v;)
and the (implicit) backward Euler method
Vi1 ~y; + At - g(tiv1, Yir1)

These are both first-order methods, since the global error is O(At).

RUNGE KUTTA METHODS

Now we will consider explicit methods, but of higher order, of the form

Yir1 ~ Y + At - P(t;, yi, At) (*)

where ¢ is called the increment function.
Note that if ¢(t;, y;, At) = g(t;,y;) we have again the simple Euler method.

For the higher order methods the increment function ¢ is not simply equal to g. Runge-Kutta methods
can all be cast in the form of eq. (*), with the simplest one being the forward Euler method.

MIDPOINT METHOD

The second order Runge Kutta midpoint method for the ODE g (t) = g(t, y(t)) is

Vi1 ~ Y + At - gt + At/2,y; + g(ts, yi) At/2)

Now the function g is evaluated at around half the time step in between ¢; and ¢, ;, where this half point
is approximated by the derivative at t;

One can show that this method is second order in the global truncation error (as opposed to Euler, which
is first order)!

y SIOpe:g(tE+1f2’ yi+'1f2}

tive ¢

(@)

Y1 Slope=glt;, 1» ¥ . 1)

(®)

RALSTON'S METHOD

Instead of halfway, we can evaluate it at 2/3th of the interval. One can show that then the local truncation
error has a minimum bound, and the resulting method is called Ralston's method

2

4 4 3

2

1 3
Yir1 =~ y; + At - (g(ti, vi) + —9g(t; +

IMPLEMENTATION RALSTON

In practise it is easier to introduce the intermediate variables k7 and k>

kl = g(t’uyz)
2 2

and write the algorithm as

1 3
Yir1 =y + At - (4k1 + 4k2)

This also typically leads to less mistakes when implementing in a programming language.

COMPARISON METHODS

The following numerical integration confirms that Ralston's method is second order: (global) error
decreases as O(At?). It is more accurate than Euler at small enough At (here At < 0.02).

€ = |y (tmax)approx — ¥ (tmax)exact|

tmax= 10, a= 220

—— eXxplicit Euler

10714 ---—- linear
—— Ralston
1044 -—-— quadratic

EXERCISES SESSION 2

1. Assume you solve a differential equation, y'(¢) = g(t, y(t)), using the forward Euler method
using a step size of At = 0.01. Assume the (global) error is exactly as in the linear regime, and
the error in Y(tmax) is 0.04. What would the error be if At = 0.005?

What woul the global error be for At = 0.005 if Ralston is used instead (assuming an error of 0.03 for
At = 0.01)?

2. The remaining exercises are on Blackboard, assessment section.

