
RECAP AND SOLUTION PREVIOUS
EXERCISE



EXPLICIT EULER METHOD FOR INITIAL VALUE PROBLEM
Given the ODE

The ODE can be solved as follows. Rewrite

as

This is called the explicit Euler method, aka the forward Euler method. This allows us to approximate
the value of  by only having information on  at the position .

Since the initial value is given, we can construct the whole solution at the discrete time points, by doing it
step-by-step:

.

= g(t, y(t))
dy(t)

dt

≈ g(t, y(t))
y(t + Δt) − y(t)

Δt

y(t + Δt)approx ≈ y(t) + Δt ⋅ g(t, y(t))

y(t + Δt) y t

t0 → t1 = t0 + Δt → t2 = t0 + 2Δt → … → tmax = tN−1 = t0 + (N − 1)Δt





ALGORITHM IMPLICIT EULER METHOD FOR IVP
Given the ODE

The explicit method is

The implicit Euler method (also known as backward Euler method) is

Notice that now  also occurs at the right hand side of eq. . This means that the equation is
not any more an explicit equation, but an implicit one.

= g(t, y(t))
dy(t)

dt

≈ g(t, y(t))
y(t + Δt) − y(t)

Δt

≈ g(t + Δt, y(t + Δt)) (*)
y(t + Δt) − y(t)

Δt

y(t + Δt) (*)



Rewriting gives

In order to determine  at the next time step,  (LHS), we already have to know .

If  is linear with , then it is easy to transform the implicit relation into a explicit one.

If  is non-linear, then it is a bit more tricky. It is an equation containing  and could be solved
using a root-finder such as Newton's method.

y(t + Δt) ≈ y(t) + Δt ⋅ g(t + Δt, y(t + Δt))

y y(t + Δt) y(t + Δt)

g y

g y(t + Δt)



SOLUTIONS
The answers to the conceptual questions can be found in the lecture notes.



SOLUTION PYTHON CODE EXPLICIT EULER

See Blackboard for .py  file

import numpy as np
import matplotlib.pyplot as plt

t0=0.0        # start time
tmax=1.0      # end time
dt=0.01
y0=1.0
Nint=int(round((tmax-t0)/dt))
t=np.zeros(Nint+1)
y=np.zeros(Nint+1)   # number of points is number of integration steps + 1
# Initial condition
t[0]=t0
y[0]=y0 

# ODE: y(t)'=g(t, y(t))
def g(t, y):
    b=1.0
    a=22.0
    return b*t-a*y

# integrate the ODT
for n in range(Nint):
    t[n+1]=t[n]+dt
    y[n+1]=y[n]+ dt * g(t[n], y[n])  # explicit Euler

# Output end point
print("y(t=tmax)=",y[Nint])



DERIVATION FOR IMPLICIT EULER

with , and hence 

Hence

≈ g(t + Δt, y(t + Δt))
y(t + Δt) − y(t)

Δt

g(t, y(t)) = bt − ay(t) g(t + Δt, y(t + Δt)) = b ⋅ (t + Δt) − a ⋅ y(t + Δt)

≈ b ⋅ (t + Δt) − a ⋅ y(t + Δt)
y(t + Δt) − y(t)

Δt



The equation can be rewritten by isolating  to the LHS. The following steps show how to do
this:

In a programming language we could implement this as

or

y(t + Δt)

y(t + Δt) ≈ y(t) + Δt ⋅ (b ⋅ (t + Δt) − a ⋅ y(t + Δt))

y(t + Δt)(1 + a ⋅ Δt) ≈ y(t) + Δt ⋅ b ⋅ (t + Δt)

y(t + Δt) ≈
y(t) + Δt ⋅ b ⋅ (t + Δt)

(1 + a ⋅ Δt)

ynext=(ynow+dt*b*(t+dt))/(1.0+a*dt)

y[n+1]=(y[n]+dt*b*t[n+1])/(1.0+a*dt)



WRONG DERIVATION

Note that for the explicit Euler method we had

It is tempting to use a similar construct for the implicit Euler

This does not work, because we do not know yet y[n+1]  and hence y[n+1] can not appear on the
right-hand side of the assignment.

We have to do it explicitly, as is done in the following

and such an equation needs to be derived for each differential equation sepeerately. Hence implicit
methods require a bit more work.

y[n+1]=y[n]+dt*g(t[n], y[n]) 

y[n+1]=y[n]+dt*g(t[n+1], y[n+1])  # WRONG

y[n+1]=(y[n]+dt*b*t[n+1])/(1.0+a*dt)   # Correct



SOLUTION EXERCISE SESSION 1 REGARDING ERROR
Explicit Euler

Implicit Euler

Δt = 0.01 : y(1) = 0.04338843

Δt = 0.1 : y(1) = 6.2479177

Δt = 0.01 : y(1) = 0.04338843

Δt = 0.1 : y(1) = 0.04339733





USING NUMBERS IN PROGRAMMING
LANGUAGES
Always use integers for quantities you can count: number of integration steps, etc.

Always use floating point numbers for quantities you cannot count.

A 32 bit floating point number is accurate up to around 7 decimal digits ( ), while a 64 bit floating
point number is accurate up to around 16 decimal digits ( ). Therefore a 64 bit float is advised.

In Python

implies that a  is an integer (of infinite precision), while

implies that a  is a 64 bit float. So one has to be aware of the way of entering numbers.

2
−23

2
−52

   a=3

   a=3.0



CONVERTING FLOAT TO INTEGERS AND VICE VERSA
To convert a float, say 3.0, to an integer use

To round to the nearest number in Python use int(round(...))
To round towards zero in Python use int(...)

To convert an int, say 2, to a float, use

Python: float(2) , or just multiply by 1.0

In Python, the resulting type can be checked using type . E.g., type(int(3.0))  gives <class 
'int'> .



TYPICAL PROGRAMMING MISTAKES

Using int  instead of float  or vice versa

If round is not used, then int(tmax/dt)  can be off-by-one! Why? Because tmax/dt could be
either slightly higher than an integer or slightly lower. Example:  or

. If it is slightly lower it will be rounded down towards the integer below it. This is also a
common mistake. Correct way in Python is int(round(tmax/dt)) .

1/0.01 ≈ 100.00001
99.99999



TYPES OF NUMERICAL ERRORS OCCURING
WITH A NUMERICAL METHOD
We distinguish two types of errors

1. Truncation error of the Taylor series for the method (Euler method: truncated after first order)

Local error (error after one integration step)

Global error (error after integrating till the end of the interval) 2. Rounding error

The smaller the error, the more accurate the result.



TRUNCATION ERROR EULER METHOD (DISCUSSED BEFORE)
In the Euler method we approximate  by

this gives the error:

where we have used .

f(x + Δx)

f(x + Δx)approx ≈ f(x) + Δx ⋅ g(x, f(x))

f(x + Δx)approx − f(x + Δx)exact = Δx2f ′′(x)/2! + O(Δx3)

g(x, f(x)) = f ′(x)



ROUND-OFF ERRORS
The round-off errors arise because of a finite representation of a floating point number in a
programming language. Round-off errors do not only occur for rounding numbers to their integer value,
but also due to rounding a number to a limited fractional value. An example is rounding  to . Then

.
π 3.1416

π − 3.1416 ≈ −7.346 × 10
−6



ROUND-OFF ERROR ILLUSTRATED BY THE EXPLICIT EULER METHOD





From  the error does not decrease any more with smaller time-step. The reason: limited
accuracy of the 64 bit floating point number is reached. For  the error in the calculation

.

The error is much larger than the threshold for a np.float64 , . This is caused by the
accumulation of round-off errors due to the many additions of order . Since  increases with
smaller , the error will even increase with smaller .

However, this is only the case for very small  and in this module the main focus will be on truncation
errors.

Δt ≲ 10
−9

Δt ≈ 10
−10

ϵ ≈ 10
−13

≈ 10
−16

Nint Nint

Δt Δt

Δt



HIGHER ORDER INTEGRATION METHODS
Let us shorten the notation a bit: , and hence . For the initial value
problem ODE

the (explicit) forward Euler method is then

and the (implicit) backward Euler method

These are both first-order methods, since the global error is .

t = ti = iΔt y(t) = y(ti) = yi

ẏ(t) = g(t, y(t))

yi+1 ≈ yi + Δt ⋅ g(ti, yi)

yi+1 ≈ yi + Δt ⋅ g(ti+1, yi+1)

O(Δt)



RUNGE KUTTA METHODS
Now we will consider explicit methods, but of higher order, of the form

where  is called the increment function.

Note that if  we have again the simple Euler method.

For the higher order methods the increment function  is not simply equal to . Runge-Kutta methods
can all be cast in the form of eq. , with the simplest one being the forward Euler method.

yi+1 ≈ yi + Δt ⋅ ϕ(ti, yi, Δt) (*)

ϕ

ϕ(ti, yi, Δt) = g(ti, yi)

ϕ g

(*)



MIDPOINT METHOD
The second order Runge Kuttamidpoint method for the ODE  is

Now the function  is evaluated at around half the time step in between  and , where this half point
is approximated by the derivative at

One can show that this method is second order in the global truncation error (as opposed to Euler, which
is first order)!

ẏ(t) = g(t, y(t))

yi+1 ≈ yi + Δt ⋅ g(ti + Δt/2, yi + g(ti, yi)Δt/2)

g ti ti+1

ti



RALSTON'S METHOD
Instead of halfway, we can evaluate it at 2/3th of the interval. One can show that then the local truncation
error has a minimum bound, and the resulting method is called Ralston's method

yi+1 ≈ yi + Δt ⋅ ( g(ti, yi) + g(ti + Δt, yi + g(ti, yi)Δt))1

4

3

4

2

3

2

3



IMPLEMENTATION RALSTON

In practise it is easier to introduce the intermediate variables  and 

and write the algorithm as

This also typically leads to less mistakes when implementing in a programming language.

k1 k2

k1 ≡ g(ti, yi)

k2 ≡ g(ti + Δt, yi + Δt ⋅ k1)
2

3

2

3

yi+1 ≈ yi + Δt ⋅ ( k1 + k2)1

4

3

4



COMPARISON METHODS



The following numerical integration confirms that Ralston's method is second order: (global) error
decreases as . It is more accurate than Euler at small enough  (here ).O(Δt

2) Δt Δt ≲ 0.02





EXERCISES SESSION 2
1. Assume you solve a differential equation, , using the forward Euler method

using a step size of . Assume the (global) error is exactly as in the linear regime, and

the error in  is 0.04. What would the error be if ?

What woul the global error be for  if Ralston is used instead (assuming an error of 0.03 for
)?

2. The remaining exercises are on Blackboard, assessment section.

y ′(t) = g(t, y(t))

Δt = 0.01

y(tmax) Δt = 0.005

Δt = 0.005
Δt = 0.01


