ICT DATE CHANGE

Note that the ICT date changed, it is now Wednesday 13/5/2026, from 1to 4 pm, in INB2101.

You should use the university-provided computers and not your own laptop, so make sure you are
confortable using them.

RECAP/FEEDBACK LAST SESSION

EXERCISE 1 LAST SESSION

For Euler, being a first order integration algorithm:, the error is proportional to At, € = ¢y At (with ¢4
some constant). Hence halving the timestep halves the error, so the error is 0.02.

Ralston is a second order method, so € = ¢y At? (with ¢y some constant). Now halving the timestep
would reduce the error by a factor of 4, so the error is 0.03/4 = 0.0075.

GENERAL HINT FOR LAST SESSION

If you didn't manage to reach agreement with the analytical solution for the last session for sufficiently
small time step, do the following exercise.

Solve the ODE by pen-and-paper, using only one integration step (so fromt = Qtot = At = 0.01),

e explicit Euler
e Ralston

Compare it with the computer program that you made, and ensure they give the same results. You can
even compare the values of ky and k», if necessary. You may have to compare two steps, so till t = 2At.

This is a good way to ensure that your program gives the desired result.

ROUND-OFF ERRORS

The round-off errors arise because of a finite representation of a floating point number in a
programming language. Round-off errors do not only occur for rounding numbers to their integer value,
but also due to rounding a number to a limited fractional value. An example is rounding 7 to 3.1416.

ROUND-OFF ERROR ILLUSTRATED BY THE EXPLICIT EULER METHOD

€ = |y (tmax)approx — ¥ (tmax)exact|

=
<
oo

=

<
'—I
-
I

=

<
'—I
M
I

=

<
'—I
I
I

=

<
'—I
o

—— error Euler
---- linear

-

round-off error et truncation-error
dominated .-~ dominated

-
-

107131072 10711 1071% 107° 1078 107’

At

5 10-8 —— error Euler

(s 1'D 7]]

o ---- linear

g

;

ey —

¥ 1010

>

|

S

b

S 10 12 |

—

e

o

S

*-S: 10—14_

I round-off error -~ truncation-error

w dominated .-~ dominated
10716 <

107131072 10711 1071% 107° 1078 107’
At

From At < 10~ the error does not decrease any more with smaller time-step. The reason: limited

accuracy of the 64 bit floating point number is reached. For At ~ 10~ the error in the calculation
e~ 101,

The error is much larger than the threshold fora np.float64, ~ 101°, This is caused by the
accumulation of round-off errors due to the many additions of order IV;,;. Since N, increases with
smaller At, the error will even increase with smaller At.

However, this is only the case for very small At and in this module the main focus will be on truncation
errors.

HIGHER ORDER METHODS

HIGHER ORDER METHODS

RUNGE KUTTA METHODS

Runge-Kutta methods (which are explicit) can be cast in the form

Yirl = Y + At - (b, yi, At)

where ¢ is called the increment function

MIDPOINT METHOD

The second order Runge Kutta midpoint method for the ODE y(t) = g(t, y(t)) is:

Vi1 ~ Y + At - gt + At/2,y; + g(ts, yi) At/2)

Now the function g is evaluated at around half the time step in between ¢; and ¢, ;, where this half point
is approximated by the derivative at t;. So ¢(t;, yi, At) = g(t; + At/2,y; + g(ti, yi) At/2).

RALSTON'S METHOD

Instead of halfway, we can evaluate it at 2/3th of the interval. One can show that then the local truncation
error has a minimum bound, and the resulting method is called Ralston's method:

1 3 2 2
Vi1 ~ y; + At - (Zg(ti, y;) + Zg(ti — gAt, Yi + gg(ti, yi)At))

This can be written as

1 3
Yir1 ~ Y + At (4k1 + 4k2)

with

k1= g(ti, v:)

2
ko =g(t; + 5

2

3

TODAY

e Derivation 2nd order RK methods
e 4th order RK method
e Symmetric method

DERIVATION 2ND ORDER RK METHODS

The above equations can be derived as follows

GENERAL FORM

For the second order RK methods the increment function equals

¢(yza ti At) — alkl (tz, yz) + a2k2(t7j, Y;, At)

where the a's are constants, and the k's are

ki = g(ti, ys)
ko = g(t; + p1At,y; + quu At - k1)

such that

Yir1 = Y + At - (ar1k1 + a2k2)
~ 1y + At -a1g9(ti, y;) + At - axg(t; + p1 At y; + g1 At - k)

DERIVATION OF COEFFICIENTS

We need to determine the unknown coefficients a1, a2, p1, and g1

TAYLOR EXPANSION ODE

For the ODE y'(t) = g(t, y(t)) we can apply a Taylor series to determine y; 11 = y(t;,1) from
yi = y(t)
vir1 = yi + Aty] + Ay} /2! + O(AL®)
— y; + Atg; + At2g£/2! + O(A?) usingy’' = g

Here the time-derivative g’ has to be determined by the total derivative, since y also changes when ¢
changes:

dg(ti,y:) Og(ti,y:) N 0g(ti,yi) Oyi

, o o p— e
g (i, i) = dt; ot; 0y; ot;
Og(ti,yi) Og(ti, i)
— ot - 8%‘ g (tz » Yi)

Hence the Taylor expansion becomes

At? (dg(ti,y;) Og(ti,y:)
+ g
21 ati 8.%‘

Yit1 = Yi + Atg; +

TAYLOR EXPANSION METHOD

We have the RK2 scheme
Yirl = Y + At - a19(ti, y;) + At - azks (*)
with ke = g(t; + p1At,y; + qu1 At - k1) and with k; = g(t;, y;).

The function k3 is of the form f(x1 + Az1, 22 + Axy) and can be expanded as a Taylor series as well
(in both variables)

9, tia 1 0 ti’ U
g(.y)quHAtk1 g(ti, yi)

O(At?
ot; Oy; T OAE)

ko = g(t; + p1 At y; + qu1Atky) = g(t;, y;) + p1At

Substituting this expansion for k2 in the RK2 scheme (*) gives

0g(ti, yi Ag(ti, yi
Yis1 X Y; + At - (a1 + ag)g(ti, yi) + At <a2p1 (8t-) + azqu19(t, yi) (3y) +O(At%)

EQUATING THE TAYLOR EXPANSIONS

The first few terms of the two Taylor expansion should then be set equal to each other. So equating the
ODE

1 0g(ti,yi) 1 Og(ti, i)
i1 = vi + Atg; + A [= —

g(ti,yz-)) + O(At?)

with the method

0g(ts, yi dg(ti, yi
Yirl ~ i + At - (a1 + a2)g(ts, yi) + At (a2p1 g(at.y) + a2q119(ti, ¥i) g(ay.y)) + O(AP)

1

gives
a;+ay =1
1
azp1 — 5
1
a2q11 = 9

These are four unknowns and three equations: one parameter free (say as): a1 = 1 — ag,
P1 = q11 = i Hence there are infinitely many 2nd order RK methods.

COEFFICIENTS FOR AFOREMENTIONED METHODS

Midpoint method correspond to as = 1 and hence a; = 0.

Ralston method correspond to as = 3/4 and hence a; = 1/4.

ANY OTHER CONSIDERATIONS?

We looked at Runge Kutta methods, and they can be generalized to any order.

RK4

The RK4 method for the ODE y(t) = g(t, y(t)) is

At
Yir1 ~ Y + —— (k1 + 2ko + 2k3 + ky)

6
where
k1= g(ti, vi)
ks = g(t; + At/2,y; + Atks/2)
ki = g(t; + At,y; + Atks)

This is a fourth order method (global truncation error O(At*)), and widely used.

SYMMETRIC METHODS

A method of the form
Yi+1 =~ (I)(Atayz)

is called a symmetric method or time-reversible if exchanging 2 + 1 <+ 7 and At < — At leaves the
method invariant. Then integrating one step forward and subsequently one step backward would give the
same result as the starting point.

WHY IMPORTANT?

Many differential equations are reversible in time (if replacing t by —t, then the same differential equation
is obtained) and hence the numerical method will be obeying a similar long-time behaviour.

Example DE: all differential equations of the form u(t)"” = g(u(t)) are reversible. E.g., Newton's
equation of motion for which u is the position and the derivative is with respect to time.

WHAT FOR THE RK FAMILY?

One can show that all of the explicit Runge Kutta methods are not symmetric. Hence they all can suffer
from long-time drifts.

IMPLICIT TRAPEZOID METHOD

The implicit trapezoid method for the ODE g (t) = g(t, y(t)) is

At
Yitl = Y; T 7(9(757:7 yz’) + g(tz‘+17 yz'+1)) (*)

Notice that this method is implicit (as with the implicit Euler method), since ;41 also occurs at the RHS.
Therefore, the equation (*) has to be made explicit in y;+1 by isolating it to the LHS before one can
actually implement it (analogous to the implicit Euler).

The method is second order, global truncation error O(At?).

PROOF THAT TRAPEZOID IS SYMMETRIC

The benefit of the trapezoid method is that y; and y;1 play a symmetric role; there is no bias towards
either of them. For example, one can rewrite

At

Yir1 ~ Ui + 7(9(% yi) + g(tis1, Yit1))
as
At
Yi X Yit1l — 7(9(% Yi) + g(ti—l—lyyi+1))

by bringing both ;1 and y; to the other side and muliplying the result by -1. Note that this is exactly the
same equation, but now % and 7 + 1 have swapped and At is replaced by — At, since this corresponds
to integrating backward in £. Hence it is a symmetric method.

This in contrast to the aforementioned explicit methods (such as the family of RK methods, which have a
bias towards y;) and the implicit Euler method (bias towards y;+1): all these methods lack this symmetry.

PROOF THAT EXPLICIT EULER IS NOT SYMMETRIC

Explicit Euler is
Yirl = yi + Atg(ts, vi)

Now this equation can be rewritten as (move ;. 1 to the other side, same for y;, and multiply both sides
by —1)

Yi = Yir1 — Atg(ti, y;) (*)

Now integrating backwards using this algorithm would imply y; needs to be known a priori to determine g
and hence this is actually the implicit Euler variant and not the explicit Euler variant any more. Therefore it
is not symmetric under time reversal.

Another way of seeing this is that the explicit Euler variant for integrating backwards would be (swap 2
and 7 + 1 and replace At by —At)

Yi = Yir1 — Atg(tiv1, yit1) (2)

and this equation is obviously not equal to eqg. *.

EXERCISES SESSION 3

See Blackboard, assessment section.

