
ICT DATE CHANGE
Note that the ICT date changed, it is now Wednesday 13/5/2026, from 1 to 4 pm, in INB2101.

You should use the university-provided computers and not your own laptop, so make sure you are
confortable using them.



RECAP/FEEDBACK LAST SESSION



EXERCISE 1 LAST SESSION
For Euler, being a first order integration algorithm:, the error is proportional to ,  (with 
some constant). Hence halving the timestep halves the error, so the error is 0.02.

Ralston is a second order method, so  (with  some constant). Now halving the timestep
would reduce the error by a factor of 4, so the error is .

Δt ϵ = c1Δt c1

ϵ = c2Δt
2

c2

0.03/4 = 0.0075



GENERAL HINT FOR LAST SESSION
If you didn't manage to reach agreement with the analytical solution for the last session for sufficiently
small time step, do the following exercise.

Solve the ODE by pen-and-paper, using only one integration step (so from  to ),

explicit Euler

Ralston

Compare it with the computer program that you made, and ensure they give the same results. You can
even compare the values of  and , if necessary. You may have to compare two steps, so till .
This is a good way to ensure that your program gives the desired result.

t = 0 t = Δt = 0.01

k1 k2 t = 2Δt



ROUND-OFF ERRORS
The round-off errors arise because of a finite representation of a floating point number in a
programming language. Round-off errors do not only occur for rounding numbers to their integer value,
but also due to rounding a number to a limited fractional value. An example is rounding  to .π 3.1416



ROUND-OFF ERROR ILLUSTRATED BY THE EXPLICIT EULER METHOD





From  the error does not decrease any more with smaller time-step. The reason: limited
accuracy of the 64 bit floating point number is reached. For  the error in the calculation

.

The error is much larger than the threshold for a np.float64 , . This is caused by the
accumulation of round-off errors due to the many additions of order . Since  increases with
smaller , the error will even increase with smaller .

However, this is only the case for very small  and in this module the main focus will be on truncation
errors.

Δt ≲ 10
−9

Δt ≈ 10
−10

ϵ ≈ 10
−13

≈ 10
−16

Nint Nint

Δt Δt

Δt



HIGHER ORDER METHODS



HIGHER ORDER METHODS

RUNGE KUTTA METHODS

Runge-Kutta methods (which are explicit) can be cast in the form

where  is called the increment function

yi+1 ≈ yi + Δt ⋅ ϕ(ti, yi, Δt) (*)

ϕ



MIDPOINT METHOD

The second order Runge Kuttamidpoint method for the ODE  is:

Now the function  is evaluated at around half the time step in between  and , where this half point
is approximated by the derivative at . So .

ẏ(t) = g(t, y(t))

yi+1 ≈ yi + Δt ⋅ g(ti + Δt/2, yi + g(ti, yi)Δt/2)

g ti ti+1

ti ϕ(ti, yi, Δt) = g(ti + Δt/2, yi + g(ti, yi)Δt/2)



RALSTON'S METHOD

Instead of halfway, we can evaluate it at 2/3th of the interval. One can show that then the local truncation
error has a minimum bound, and the resulting method is called Ralston's method:

This can be written as

with

yi+1 ≈ yi + Δt ⋅ ( g(ti, yi) + g(ti + Δt, yi + g(ti, yi)Δt))1

4

3

4

2

3

2

3

yi+1 ≈ yi + Δt ⋅ ( k1 + k2)1

4

3

4

k1 = g(ti, yi)

k2 = g(ti + Δt, yi + Δt ⋅ k1)
2

3

2

3



TODAY
Derivation 2nd order RK methods

4th order RK method

Symmetric method



DERIVATION 2ND ORDER RK METHODS
The above equations can be derived as follows

GENERAL FORM
For the second order RK methods the increment function equals

where the 's are constants, and the 's are

such that

ϕ(yi, ti, Δt) = a1k1(ti, yi) + a2k2(ti, yi, Δt) (1)

a k

k1 = g(ti, yi)

k2 = g(ti + p1Δt, yi + q11Δt ⋅ k1)

yi+1 ≈ yi + Δt ⋅ (a1k1 + a2k2)

≈ yi + Δt ⋅ a1g(ti, yi) + Δt ⋅ a2g(ti + p1Δt, yi + q11Δt ⋅ k1)



DERIVATION OF COEFFICIENTS
We need to determine the unknown coefficients , , , and 

TAYLOR EXPANSION ODE

For the ODE  we can apply a Taylor series to determine  from

Here the time-derivative  has to be determined by the total derivative, since  also changes when 
changes:

Hence the Taylor expansion becomes

a1 a2 p1 q11

y ′(t) = g(t, y(t)) yi+1 ≡ y(ti+1)
yi ≡ y(ti)

yi+1 = yi + Δty ′
i + Δt2y ′′

i /2! + O(Δt3)

= yi + Δtgi + Δt2g′
i
/2! + O(Δt3) using y ′ = g

g′ y t

g′(ti, yi) ≡ = +

= + g(ti, yi)

dg(ti, yi)

dti

∂g(ti, yi)

∂ti

∂g(ti, yi)

∂yi

∂yi
∂ti

∂g(ti, yi)

∂ti

∂g(ti, yi)

∂yi

yi+1 = yi + Δtgi + ( + g(ti, yi)) + O(Δt3)
Δt2

2!

∂g(ti, yi)

∂ti

∂g(ti, yi)

∂yi



TAYLOR EXPANSION METHOD

We have the RK2 scheme

with  and with .

The function  is of the form  and can be expanded as a Taylor series as well
(in both variables)

Substituting this expansion for  in the RK2 scheme  gives

yi+1 ≈ yi + Δt ⋅ a1g(ti, yi) + Δt ⋅ a2k2 (*)

k2 = g(ti + p1Δt, yi + q11Δt ⋅ k1) k1 = g(ti, yi)

k2 f(x1 + Δx1, x2 + Δx2)

k2 ≡ g(ti + p1Δt, yi + q11Δtk1) = g(ti, yi) + p1Δt + q11Δtk1 + O(Δt2)
∂g(ti, yi)

∂ti

∂g(ti, yi)

∂yi

k2 (*)

yi+1 ≈ yi + Δt ⋅ (a1 + a2)g(ti, yi) + Δt2 (a2p1 + a2q11g(ti, yi) ) + O(Δt3)
∂g(ti, yi)

∂ti

∂g(ti, yi)

∂yi



EQUATING THE TAYLOR EXPANSIONS

The first few terms of the two Taylor expansion should then be set equal to each other. So equating the
ODE

with the method

gives

These are four unknowns and three equations: one parameter free (say ): ,
. Hence there are infinitely many 2nd order RK methods.

yi+1 = yi + Δtgi + Δt2 ( + g(ti, yi)) + O(Δt3)
1

2

∂g(ti, yi)

∂ti

1

2

∂g(ti, yi)

∂yi

yi+1 ≈ yi + Δt ⋅ (a1 + a2)g(ti, yi) + Δt2 (a2p1 + a2q11g(ti, yi) ) + O(Δt3)
∂g(ti, yi)

∂ti

∂g(ti, yi)

∂yi

a1 + a2 = 1

a2p1 =

a2q11 =

1

2
1

2

a2 a1 = 1 − a2

p1 = q11 = 1
2a2



COEFFICIENTS FOR AFOREMENTIONED METHODS
Midpoint method correspond to  and hence .

Ralston method correspond to  and hence .

a2 = 1 a1 = 0

a2 = 3/4 a1 = 1/4



ANY OTHER CONSIDERATIONS?
We looked at Runge Kutta methods, and they can be generalized to any order.



RK4

The RK4 method for the ODE  is

where

This is a fourth order method (global truncation error ), and widely used.

y(t)′ = g(t, y(t))

yi+1 ≈ yi + (k1 + 2k2 + 2k3 + k4)
Δt

6

k1 = g(ti, yi)

k2 = g(ti + Δt/2, yi + Δtk1/2)

k3 = g(ti + Δt/2, yi + Δtk2/2)

k4 = g(ti + Δt, yi + Δtk3)

O(Δt4)



SYMMETRIC METHODS
A method of the form

is called a symmetric method or time-reversible if exchanging  and  leaves the
method invariant. Then integrating one step forward and subsequently one step backward would give the
same result as the starting point.

WHY IMPORTANT?
Many differential equations are reversible in time (if replacing  by , then the same differential equation
is obtained) and hence the numerical method will be obeying a similar long-time behaviour.

Example DE: all differential equations of the form  are reversible. E.g., Newton's
equation of motion for which  is the position and the derivative is with respect to time.

WHAT FOR THE RK FAMILY?
One can show that all of the explicit Runge Kutta methods are not symmetric. Hence they all can suffer
from long-time drifts.

yi+1 ≈ Φ(Δt, yi)

i + 1 ↔ i Δt ↔ −Δt

t −t

u(t)′′ = g(u(t))
u



IMPLICIT TRAPEZOID METHOD
The implicit trapezoid method for the ODE  is

Notice that this method is implicit (as with the implicit Euler method), since  also occurs at the RHS.
Therefore, the equation  has to be made explicit in  by isolating it to the LHS before one can
actually implement it (analogous to the implicit Euler).

The method is second order, global truncation error .

ẏ(t) = g(t, y(t))

yi+1 ≈ yi + (g(ti, yi) + g(ti+1, yi+1)) (*)
Δt

2

yi+1

(*) yi+1

O(Δt2)



PROOF THAT TRAPEZOID IS SYMMETRIC

The benefit of the trapezoid method is that  and  play a symmetric role; there is no bias towards
either of them. For example, one can rewrite

as

by bringing both  and  to the other side and muliplying the result by -1. Note that this is exactly the
same equation, but now  and  have swapped and  is replaced by , since this corresponds
to integrating backward in . Hence it is a symmetric method.

This in contrast to the aforementioned explicit methods (such as the family of RK methods, which have a
bias towards ) and the implicit Euler method (bias towards ): all these methods lack this symmetry.

yi yi+1

yi+1 ≈ yi + (g(ti, yi) + g(ti+1, yi+1))
Δt

2

yi ≈ yi+1 − (g(ti, yi) + g(ti+1, yi+1))
Δt

2

yi+1 yi

i i + 1 Δt −Δt

t

yi yi+1



PROOF THAT EXPLICIT EULER IS NOT SYMMETRIC

Explicit Euler is

Now this equation can be rewritten as (move  to the other side, same for , and multiply both sides
by )

Now integrating backwards using this algorithm would imply  needs to be known a priori to determine 
and hence this is actually the implicit Euler variant and not the explicit Euler variant any more. Therefore it
is not symmetric under time reversal.

Another way of seeing this is that the explicit Euler variant for integrating backwards would be (swap 
and  and replace  by )

and this equation is obviously not equal to eq. .

yi+1 ≈ yi + Δtg(ti, yi)

yi+1 yi

−1

yi ≈ yi+1 − Δtg(ti, yi) (*)

yi g

i

i + 1 Δt −Δt

yi ≈ yi+1 − Δtg(ti+1, yi+1) (2)

*



EXERCISES SESSION 3
See Blackboard, assessment section.


