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Welcome!

Welcome to MTH3008: Tensor Analysis!

Lecturer

Dr Paula Lins

pmacedolinsdearaujo@lincoln.ac.uk
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Module information



Weekly structure

Weekly resources on Blackboard

Each week, you will �nd the following materials on Blackboard:

Lecture slides

▶ Slides will be available in advance, in the previous week.

Exercises

▶ Problem sheets will be made available each week.

▶ You are expected to attempt all exercises before the

following lecture.

▶ Some exercises will be solved in class.

▶ Solutions will be uploaded together with the lecture slides in

the following week.

▶ Please make a serious attempt to solve the exercises before

looking at the solutions!
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Resources

Material

The slides will cover everything you need to know for the
assessments.

You can �nd further references on BB: Module content →
Module resources → Module reading list.

Asking questions

Ask questions at any time.

When solving exercises, use the opportunity to ask questions
privately.
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Assessments

Assessments

Portfolio (40 %)

▶ Part A at home
▶ Part B: In-class test

Final Exam (60 %)

Remark

1. Part A will be submitted together with part B as one
assessement.

2. For in-class assessments: You are allowed to bring one piece of
A4 paper with hand-written or typed notes on both sides.
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Tensors

Tensors

"Tensors are mathematical objects that are invariant under a
change of coordinates & have components that change in
predictable ways."

Jesus Najera

Originally Published:
https://www.setzeus.com/public-blog-post/a-light-intro-to-tensors
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Tensor Analysis .... some basics

What is a tensor?

A tensor is simply a generalisation of a vector . . .

Why are they important?

Tensor are a mathematical tool that allows us to express physical
quantities e.g.

temperature - scalar (rank 0 tensor)

velocity - vector (rank 1 tensor)

stress - matrix (rank 2 tensor)

independently of the coordinate system!

Motivation: Einstein's General Relatively equation is written
exclusively in terms of tensors.
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Syllabus

Blackboard: Module Content → Module Resources → Syllabus

Chapter 1: Su�x Notation

Chapter 2: Vector Di�erential Operators

Chapter 3: Local Coordinate Transfrom

Chapter 4: Tensors

Chapter 5: Tensors in a generalised coordinate system

Chapter 6: Tensor Algebra

Chapter 7: Tensor Fields
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Let us start!

I hope you enjoy this module!!
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Chapter 1: Suffix Notation



Today: Chapter 1�Su�x Notation

1. Suf�x Notation

2. The Kronecker Delta

3. The Alternating Tensor

4. The relationship between δij and ϵijk
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Suffix Notation



Convention

Our convention

Here, (unless stated otherwise) we assume that all vectors are real
and three-dimensional.

This means a vector is triple of real numbers

v = (v1, v2, v3) ∈ R3.

We can also write
v = v1i+ v2j+ v3k,

where i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) are unit vectors.
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Suffix notation

We use su�x notation to ease notation.

For instance, consider the dot product of two vectors:

a · b = a1b1 + a2b2 + a3b3 =

3∑
j=1

ajbj .

In su�x (or index) notation:

a · b = ajbj , (i.e. drop the sum.)

j is a repeated dummy index;

Repeated indices are always summed over for j = 1, 2, 3;

Dummy indices must NOT appear more than twice in any
term;

Choice of index does not matter

ajbj = akbk = anbn = a1b1 + a2b2 + a3b3.
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Multiplying dot products

Example

Another example where we can see how su�x notation can ease
notation is a multiplication of dot products.

Given vectors a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3) and
d = (d1, d2, d3), we have

(a · b)(c · d) = (a1b1 + a2b2 + a3b3)(c1d1 + c2d2 + c3d3)

=

 3∑
j=1

ajbj

( 3∑
k=1

ckdk

)
.

In su�x notation

(a · b)(c · d) = ajbjckdk.
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Remark

Again (a · b)(c · d) = ajbjckdk

Remark.

The choice of indices does not matter:

ajbjckdk = aℓbℓcmdm = azbzcxdx

= (a1b1 + a2b2 + a3b3)(c1d1 + c2d2 + c3d3).

The order doesn't matter either:

ckajdkbj = (ajbj)(ckdk) indices indicate operations.

Make sure each index appears at most twice in each term!
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Free index vs Dummy index

Free index vs Dummy index

Free indices: Occur once ai, bjk or ckℓm

Dummy indices: Repeated indices (exactly twice) aℓbℓ or
aibicjdj .

Example

How many free/dummy indices are there in:

aibjckdℓeℓ?

3 free indices i, j, and k,

1 dummy index ℓ.
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Free index vs Dummy index-Examples

Free indices

Free indices represent entries of a vector. For instance, if
v = (v1, v2, v3) and λ ∈ R, we know that

λv = (λv1, λv2, λv3).

In index notation we could just write

(λv)i = λvi.

So, vi represents each entry of v.

Important

When we write (λv)i we mean the ith component of the vector λv.
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Free index vs Dummy index-Examples

Dummy indices

Dummy indices represent sums: given v = (v1, v2, v3) and
u = (u1, u2, u3), the dot product is

v · u = v1u1 + v2u2 + v3u3,

In su�x notation
v · u = viui.
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Scalars vs Vectors

Scalars

A scalar is an element of R.

We can recognise a scalar in su�x notation because it has zero
free indices.

Example.

The dot product produces a scalar quantity:

(1, 2, 3) · (2, 2, 2) = 1 · 2 + 2 · 2 + 3 · 2 = 12.

We can use su�x notation to easily visualise this for any two
vectors a and b:

a · b = aibi

which has no free index (only a dummy index i) so it is a scalar.
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Scalars vs Vectors

Question

Is the following a scalar?

((a · c)b)i =

 3∑
j=1

ajcj

 bi = ajbicj .

We see that this has one free term, so it is not a scalar.

This is a vector. E.g.

((1, 2, 1) · (1, 0, 1)) (0, 0, 1) = 2(0, 0, 1) = (0, 0, 2).

Important! The same free indices must always be used for each
term in an equation e.g. (a · c)b = d is equivalent to ajcjbi = di.

18 32



Example: A Vector Equation

Example: A Vector Equation

Write in su�x notation: u+ (a · b)v = |a|2(b · v)a

First step: Introduce free index i:

(u+ (a · b)v)i = ( (a · a)︸ ︷︷ ︸
rewritten

(b · v)a)i. (|a| :=
√
a · a)

Now, we �distribute" the free index i. Note that, for instance, a · b
is a scalar, not a vector, so it has no free indices. So, it does not
inherit i:

ui + (a · b)vi = (a · a)(b · v)ai,

Note: Every term has the same free index.
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Example: A Vector Equation- second step

Example: A Vector Equation

Write in su�x notation: u+ (a · b)v = |a|2(b · v)a

First step: In �rst step we got

ui + (a · b)vi = (a · a)(b · v)ai,

Second step: Introduce dummy indices. We know that a · b,
a · a and b · v are sums. So, they appear with dummy indices in
su�x notation:

ui + ajbjvi = akakbℓvℓai

Important! No dummy index appears more than twice in any
term. We used three di�erent dummy indices j, k, ℓ.
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Reminder: Suffix notation�Practice

Your turn!

Write the following in su�x notation:

(a · b)u+ |c|2v
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Example: Matrices

Example: Matrices

Let A and B be n× n matrices. Show that the entries of C = AB
can be written as

Cij = AikBkj

1. Think of i and j as row/column counters i.e. Cij is the
element in the i-th row and j-column of matrix C.

2. So if C = AB, Cij is found by taking the i-th row of A and the
j-th column of B and multiplying term by term:

Cij = Ai1B1j +Ai2B2j + . . .+AinBnj

=

n∑
k=1

AikBkj

= AikBkj .
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Example: Matrices-Part 2

Example: Matrices-Part 2

For instance, for the 3× 3 matrix

C = AB

where

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 and B =

b11 b12 b13
b21 b22 b23
b31 b32 b33


verify Cij = AikBkj .

Remark

The formula Cij = AikBkj for the (i, j)-component of a product of
matrices will be important for us.
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Example: Trace of a Matrix

Example: Trace of a Matrix

Given N ×N matrices A and B, show that:

Trace(AB) = Trace(BA)

Trace is the sum of elements on a diagonal.

Tr(C) = C11 + C22 + . . .+ CNN = Cjj .

So we have Tr(AB) = Tr(AikBkj) = AjkBkj .

Similarly the trace of BA is

Tr(BA) = BjkAkj = AkjBjk︸ ︷︷ ︸
re-order

= AjkBkj︸ ︷︷ ︸
re-label

= Tr(AB).
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Practical Question: Transpose of a Matrix

Practical Question: Transpose of a Matrix

Let A and B be the 3× 3 matrices

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 and B =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 .

Show, using su�x notation, that

(AB)T = BTAT ,

where AT is the transpose of A.
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The Kronecker Delta



Definition�Kronecker delta

De�nition.

In vector notation, the Kronecker delta δij is de�ned by

δij =

{
1 if i = j,
0 if i ̸= j.

Remark.

i and j each take the values 1, 2 or 3.

δij will reach nine values for di�erent i and j.

We can think of this as the identity matrix:

δij =

 1 0 0
0 1 0
0 0 1

 .
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An important property of the Kronecker

delta

Property of Kronecker delta

Consider the product in su�x notation:

δijaj =

3∑
j=1

δijaj = δi1a1 + δi2a2 + δi3a3, i = 1, 2, 3

Repeated dummy index j is summed over.

Free index i indicates this is a vector quantity.

Next we consider each component of the vector separately
i.e. i = 1, i = 2 and i = 3.
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An important property of the Kronecker

delta�Part 2

Property of Kronecker delta

Recall:

δij =

{
1 if i = j,
0 if i ̸= j.

If i = 1, then in vector notation, we have

δ1jaj =

3∑
j=1

δ1jaj = δ11︸︷︷︸
=1

a1 + δ12︸︷︷︸
=0

a2 + δ13︸︷︷︸
=0

a3 = a1.
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An important property of the Kronecker

delta�Part 2

Property of Kronecker delta

If i = 2, then

δ2jaj =

3∑
j=1

δ2jaj =���δ21a1 + δ22a2 +��δ23a3 = a2

If i = 3, then

δ3jaj =

3∑
j=1

δ3jaj =���δ31a1 +���δ32a2 + δ33a3 = a3.
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Properties of the Kronecker Delta � Part

3

Summary of Key Property

To summarise, we have:

δ1jaj = a1, δ2jaj = a2, δ3jaj = a3.

This generalises to:

δijaj = ai (the repeated index is absorbed).

For this reason, the Kronecker delta is sometimes called the
substitution tensor, because it replaces the repeated index with
the free index.
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Symmetry of the Kronecker Delta

Remark

The following also holds:

δjiai = aj .

Proof. Exercise!
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Next lecture

Next time...

More on the Kronecker delta

δij =

{
1 if i = j,
0 if i ̸= j.

The alternating tensor

ϵijk =


0 if any of i, j, k are equal,
+1 if (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2),
−1 if (i, j, k) = (1, 3, 2), (2, 1, 3) or (3, 2, 1).
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