

TENSOR ANALYSIS

SLIDES WEEK 19 – LECTURE 2

PAULA LINS

2025/26

CHAPTER 1: SUFFIX NOTATION

Today: Chapter 1–Suffix Notation

1. Suffix Notation
2. The Kronecker Delta
3. The Alternating Tensor
4. The relationship between δ_{ij} and ϵ_{ijk}

REMINDER

CONVENTION

Our convention

Here, we assume that all vectors are three-dimensional.

This means a **vector** is triple of real numbers

$$\mathbf{v} = (v_1, v_2, v_3) \in \mathbb{R}^3.$$

We can also write

$$\mathbf{v} = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k},$$

where $\mathbf{i} = (1, 0, 0)$, $\mathbf{j} = (0, 1, 0)$, and $\mathbf{k} = (0, 0, 1)$ are unit vectors.

REMINDER: SUFFIX NOTATION-EXAMPLE

We have seen that we can use **suffix notation** to make notation simpler.

Example

In **vector notation**, we have

$$\begin{aligned}(\mathbf{a} \cdot \mathbf{b})\mathbf{c} &= ((a_1, a_2, a_3) \cdot (b_1, b_2, b_3)) (c_1, c_2, c_3) \\&= \left(\sum_{i=1}^3 a_i b_i \right) (c_1, c_2, c_3) \\&= \left(\left(\sum_{i=1}^3 a_i b_i \right) c_1, \left(\sum_{i=1}^3 a_i b_i \right) c_2, \left(\sum_{i=1}^3 a_i b_i \right) c_3 \right).\end{aligned}$$

In **suffix notation**, we write simply

$$((\mathbf{a} \cdot \mathbf{b})\mathbf{c})_i = a_j b_j c_i.$$

REMINDER: SUFFIX NOTATION–STEPS

Recall

To write $(\mathbf{a} \cdot \mathbf{b})\mathbf{c}$ in **suffix notation**, we follow the next steps:

First step: Introduce **free** index i :

$$((\mathbf{a} \cdot \mathbf{b})\mathbf{c})_i = (\mathbf{a} \cdot \mathbf{b})c_i$$

Second step: introduce a **dummy** index j :

$$((\mathbf{a} \cdot \mathbf{b})\mathbf{c})_i = a_j b_j c_i.$$

REMINDER: SUFFIX NOTATION–NOMENCLATURE

Recall

In suffix notation we have

$$((\mathbf{a} \cdot \mathbf{b})\mathbf{c})_i = a_j b_j c_i$$

- j is a repeated **dummy index**.
- Repeated indices are implicitly summed over $j = 1, 2, 3$.
- i is a **free index**.
- One free index in a term indicates it is a vector quantity.
- No free indices in a term indicate a scalar quantity.

E.g. dot product $\mathbf{a} \cdot \mathbf{b} = a_j b_j$ produces a scalar.

REMINDER: SUFFIX NOTATION–RULES

Recall

In suffix notation we have

$$((\mathbf{a} \cdot \mathbf{b})\mathbf{c})_i = a_j b_j c_i$$

Rules:

- No dummy index can appear more than twice in a term.
- Each term in an equation must have the same free index.

REMINDER: SUFFIX NOTATION–EXAMPLE

Example

Let us write the following in **suffix notation**:

$$\mathbf{u} + (\mathbf{a} \cdot \mathbf{b})\mathbf{v} = |\mathbf{a}|^2(\mathbf{b} \cdot \mathbf{v})\mathbf{a}$$

First step: Introduce **free** index i :

$$(\mathbf{u} + (\mathbf{a} \cdot \mathbf{b})\mathbf{v})_i = (\underbrace{(\mathbf{a} \cdot \mathbf{a})}_{\text{rewritten}} (\mathbf{b} \cdot \mathbf{v})\mathbf{a})_i.$$

Then, the vectors inherit these free indices (but not the sums!):

$$u_i + (\mathbf{a} \cdot \mathbf{b})v_i = (\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{v})a_i$$

Second step: introduce **dummy indices** for sums:

$$u_i + a_j b_j v_i = a_\ell a_\ell b_m v_m a_i.$$

EXAMPLE: MATRICES

Example: Matrices

Let $A = (A_{ij})$ and $B = (B_{ij})$ be $n \times n$ matrices.

Then the entries of the matrix $C = AB$ are given by the formula in **suffix notation**

$$C_{ij} = A_{ik}B_{kj}$$

DEFINITION-KRONECKER DELTA

Definition.

The **Kronecker delta** δ_{ij} is defined by

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Remark.

- i and j each take the values 1, 2 or 3.
- δ_{ij} will reach nine values for different i and j .
- We can think of this as the identity matrix:

$$\delta_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Property of Kronecker delta

We have shown that

$$\delta_{ij} a_j = a_i,$$

$$\delta_{ji} a_j = a_i.$$

- That is, the repeated index is absorbed.
- For this reason, Kronecker delta is sometimes called the "**substitution tensor**", because it replaces repeated index with free index.

MORE ON THE KRONECKER DELTA

KRONECKER DELTA AND THE DOT PRODUCT

Kronecker Delta and the Dot Product

Using that $\delta_{ij}a_j = a_i$, we can write

$$\mathbf{a} \cdot \mathbf{b} = \delta_{ij}a_i b_j.$$

In fact, using **suffix notation** we have

$$\mathbf{a} \cdot \mathbf{b} = a_i b_i = a_i (\delta_{ij} b_j) = \delta_{ij} a_i b_j.$$

We can also check this using **vector notation**:

$$\begin{aligned}\delta_{ij}a_i b_j &= \sum_{i=1}^3 \sum_{j=1}^3 \delta_{ij}a_i b_j = \delta_{11}a_1 b_1 + \delta_{22}a_2 b_2 + \delta_{33}a_3 b_3 \\ &= a_1 b_1 + a_2 b_2 + a_3 b_3 = \mathbf{a} \cdot \mathbf{b}.\end{aligned}$$

VECTOR VS SUFFIX NOTATION

Vector vs suffix notation

We defined the Kronecker delta as follows

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Note that this notation is given in **vector notation**. That is, we are specifying the values of $\delta_{11}, \delta_{12}, \dots, \delta_{33}$ at the same time.

However, in **suffix notation**, the term

$$\delta_{ii}$$

is a **sum**. (We will explore δ_{ii} in the next slide.)

So, we need to be attentive to the context.

EXAMPLE 1

Example

Evaluate δ_{jj} , which is given in suffix notation.

As j is repeated, summation convention implies that we are summing from $j = 1$ to 3.

In fact, in **vector notation**, this is the same as

$$\sum_{j=1}^3 \delta_{jj} = \delta_{11} + \delta_{22} + \delta_{33} = 3,$$

because, by definition

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

EXAMPLE 2

Example

Simplify the following expression in **suffix notation**

$$\delta_{ij}\delta_{jk}.$$

Solution: Here only j is repeated, so we only need to sum over j . Thus $\delta_{ij}\delta_{jk}$ in **vector notation** is

$$\sum_{j=1}^3 \delta_{ij}\delta_{jk} = \delta_{i1}\delta_{1k} + \delta_{i2}\delta_{2k} + \delta_{i3}\delta_{3k}.$$

The result depend on the values of i and k .

- In fact, δ_{i1} is zero if $i \neq 1$, and 1 if $i = 1$.
- So, we know that the non-zero term among δ_{i1} , δ_{i2} , δ_{i3} is δ_{ii} .

EXAMPLE 2 – PART 2

Example

Simplify the following expression in **suffix notation**

$$\delta_{ij}\delta_{jk}.$$

Solution (cont):

■ Thus

$$\delta_{ij}\delta_{jk} = \sum_{j=1}^3 \delta_{ij}\delta_{jk} = \delta_{ii}\delta_{ik} = \delta_{ik}.$$

■ We conclude

$$\boxed{\delta_{i\textcolor{violet}{j}}\delta_{\textcolor{violet}{j}k} = \delta_{ik}.}$$

That is, the repeated index is absorbed

PRACTICE

Your turn!

Evaluate

$$\delta_{\ell\ell}\delta_{mn}\delta_{pp}\delta_{nq}.$$

Practical Question

Simplify the suffix notation expression

$$\delta_{ij}a_jb_\ell c_k\delta_{i\ell}$$

and write the result in **vector form**.

THE ALTERNATING TENSOR

THE ALTERNATING TENSOR

Next

- We have seen that the Kronecker Delta can be used to define the dot product.
- We will see that the **Alternating Tensor** is useful for defining the **cross product**.

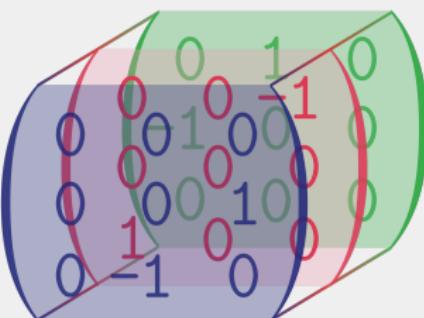
DEFINITION

Definition.

The **alternating tensor** ϵ_{ijk} is defined by

$$\epsilon_{ijk} = \begin{cases} 0 & \text{if any of } i, j, k \text{ are equal,} \\ +1 & \text{if } (i, j, k) = (1, 2, 3), (2, 3, 1) \text{ or } (3, 1, 2), \\ -1 & \text{if } (i, j, k) = (1, 3, 2), (2, 1, 3) \text{ or } (3, 2, 1). \end{cases}$$

The **alternating tensor** ϵ_{ijk} may be visualised by a 3×3 array:

$$\epsilon_{ijk} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$


VECTOR VS SUFFIX NOTATION

Vector vs suffix notation

- As for δ_{ij} , it is very important to distinguish **suffix** and **vector notation**.
- In the definition

$$\epsilon_{ijk} = \begin{cases} 0 & \text{if any of } i, j, k \text{ are equal,} \\ +1 & \text{if } (i, j, k) = (1, 2, 3), (2, 3, 1) \text{ or } (3, 1, 2), \\ -1 & \text{if } (i, j, k) = (1, 3, 2), (2, 1, 3) \text{ or } (3, 2, 1). \end{cases}$$

we are using **vector notation**. So, for instance, $\epsilon_{iij} = 0$.

- In **suffix notation**, ϵ_{iij} is the sum

$$\epsilon_{iij} = \sum_{i=1}^3 \epsilon_{iij} = \epsilon_{11j} + \epsilon_{22j} + \epsilon_{33j} = 0.$$

Properties of the Alternating Tensor

In the following, we are using **vector notation**:

- ϵ_{ijk} keeps **unchanged** if indices are reordered by a **cyclic permutation**:

$$\epsilon_{ijk} = \epsilon_{jki} = \epsilon_{kij}.$$

- The sign of ϵ_{ijk} **changes** if any two of the suffices are **interchanged**:

$$\epsilon_{ijk} = -\epsilon_{jik}$$

that is, the alternating tensor ϵ_{ijk} is **anti-symmetric**.

EXAMPLE- ALTERNATING TENSOR

Example

Evaluate $\epsilon_{ijk}\epsilon_{ijk}$ in **suffix notation**.

- All three indices i, j and k are repeated i.e. summed over. So, in **vector notation** $\epsilon_{ijk}\epsilon_{ijk}$ is

$$\sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{ijk}\epsilon_{ijk} = \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{ijk}^2.$$

- This gives a total of 27 terms.
- However, only six of these terms are non-zero!

$$\begin{aligned}\epsilon_{ijk}\epsilon_{ijk} &= \epsilon_{123}^2 + \epsilon_{132}^2 + \epsilon_{213}^2 + \epsilon_{231}^2 + \epsilon_{312}^2 + \epsilon_{321}^2, \\ &= 1^2 + (-1)^2 + (-1)^2 + 1^2 + 1^2 + (-1)^2 = 6.\end{aligned}$$

Relations of alternating tensors

In the following, we will see how the alternating tensor ϵ_{ijk} is related to

- The cross product of two vectors.
- The determinant of 3×3 matrices.
- The scalar triple product.

CROSS PRODUCT

Definition.

Recall that, the **cross product** of two vectors

$$\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k} \quad \text{and} \quad \mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$$

is

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}.$$

Cross Product

You can think of the **cross product** as follows:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}.$$

THE ALTERNATING TENSOR AND THE CROSS PRODUCT

The Alternating Tensor and the Cross Product

We can write

$$(\mathbf{a} \times \mathbf{b})_i = \epsilon_{ijk} a_j b_k.$$

Remark.

- When we write $(\mathbf{a} \times \mathbf{b})_i$, we mean the i th component of the vector $\mathbf{a} \times \mathbf{b}$.
- Here, j and k are **dummy indices** i.e. they indicate sums.
- i is a **free index**, indicating the coordinate we are considering.

CHECKING

Let us check

Let us check the formula

$$(\mathbf{a} \times \mathbf{b})_i = \epsilon_{ijk} a_j b_k$$

for $i = 1$. In **vector notation**, $\epsilon_{1jk} a_j b_k$ is the same as

$$\begin{aligned} \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{1jk} a_j b_k &= \epsilon_{123} a_2 b_3 + \epsilon_{132} a_3 b_2, \\ &= (+1)a_2 b_3 + (-1)a_3 b_2, \\ &= a_2 b_3 - a_3 b_2, \end{aligned}$$

which agrees with

$$\mathbf{a} \times \mathbf{b} = (a_2 b_3 - a_3 b_2) \mathbf{i} - (a_1 b_3 - a_3 b_1) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}.$$

Exercise: Check this formula for $i = 2$ and $i = 3$.

PRACTICAL QUESTION

Your turn!

Use suffix notation to show that

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}.$$

ALTERNATING TENSOR AND MATRIX DETERMINANT

Alternating Tensor and Matrix Determinant

There is a link between ϵ_{ijk} and the **determinant** of a 3×3 matrix:

$$|M| = \epsilon_{ijk} M_{1i} M_{2j} M_{3k}, \quad (\text{row})$$

$$|M| = \epsilon_{ijk} M_{i1} M_{j2} M_{k3}. \quad (\text{column})$$

Let us check!

Consider the matrix

$$M = \begin{pmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{pmatrix}.$$

ALTERNATING TENSOR AND MATRIX DETERMINANT - PROOF

Let us check!

The determinant of M is given by

$$|M| = M_{11}(M_{22}M_{33} - M_{23}M_{32}) - M_{12}(M_{21}M_{33} - M_{23}M_{31}) + M_{13}(M_{21}M_{32} - M_{22}M_{31})$$

We have

$$\begin{aligned}\epsilon_{ijk} M_{1i} M_{2j} M_{3k} &= \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{ijk} M_{1i} M_{2j} M_{3k} \\ &= \underline{\epsilon_{123}} M_{11} M_{22} M_{33} + \underline{\epsilon_{132}} M_{11} M_{23} M_{32} \\ &\quad + \underline{\epsilon_{231}} M_{12} M_{23} M_{31} + \underline{\epsilon_{213}} M_{12} M_{21} M_{33} \\ &\quad + \underline{\epsilon_{312}} M_{13} M_{21} M_{32} + \underline{\epsilon_{321}} M_{13} M_{22} M_{31}\end{aligned}$$

ALTERNATING TENSOR AND MATRIX DETERMINANT - PROOF - PART 2

Let us check!

The determinant of M is given by

$$\begin{aligned}|M| &= M_{11}(M_{22}M_{33} - M_{23}M_{32}) - M_{12}(M_{21}M_{33} - M_{23}M_{31}) \\ &\quad + M_{13}(M_{21}M_{32} - M_{22}M_{31})\end{aligned}$$

We have

$$\begin{aligned}\epsilon_{ijk} M_{1i} M_{2j} M_{3k} &= \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{ijk} M_{1i} M_{2j} M_{3k} \\ &= \underline{(+1)} M_{11} M_{22} M_{33} + \underline{(-1)} M_{11} M_{23} M_{32} \\ &\quad + \underline{(+1)} M_{12} M_{23} M_{31} + \underline{(-1)} M_{12} M_{21} M_{33} \\ &\quad + \underline{(+1)} M_{13} M_{21} M_{32} + \underline{(-1)} M_{13} M_{22} M_{31}\end{aligned}$$

ALTERNATING TENSOR AND MATRIX DETERMINANT - PROOF- PART 3

Let us check!

The determinant of M is given by

$$\begin{aligned}|M| &= M_{11}(M_{22}M_{33} - M_{23}M_{32}) - M_{12}(M_{21}M_{33} - M_{23}M_{31}) \\ &\quad + M_{13}(M_{21}M_{32} - M_{22}M_{31})\end{aligned}$$

We have

$$\begin{aligned}\epsilon_{ijk} M_{1i} M_{2j} M_{3k} &= \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{ijk} M_{1i} M_{2j} M_{3k} \\ &= M_{11}(M_{22}M_{33} - M_{23}M_{32}) \\ &\quad + M_{12}(M_{23}M_{31} - M_{21}M_{33}) \\ &\quad + M_{13}(M_{21}M_{32} - M_{22}M_{31}) = |M|.\end{aligned}$$

ALTERNATING TENSOR AND MATRIX DETERMINANT - PROOF- PART 4

Let us check!

Following similar steps, we can show the other equality in terms of columns:

$$|M| = \epsilon_{ijk} M_{i1} M_{j2} M_{k3}.$$

A RELATED FORMULA INVOLVING THE DETERMINANT

A related formula

The link between ϵ_{ijk} and the determinant of a 3×3 matrix is

$$|M| = \epsilon_{ijk} M_{1i} M_{2j} M_{3k}.$$

An important related formula is

$$\epsilon_{pqr} |M| = \epsilon_{ijk} M_{pi} M_{qj} M_{rk}.$$

THE ALTERNATING PRODUCT AND THE SCALAR TRIPLE PRODUCT

Definition.

The **scalar triple product** is $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$.

Suffix notation

Let us write the **scalar triple product** in suffix notation.

Recall that the **cross product** and the **alternating tensor** are related:

$$(\mathbf{b} \times \mathbf{c})_i = \epsilon_{ijk} b_j c_k.$$

Thus,

$$\begin{aligned}\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) &= a_i (\mathbf{b} \times \mathbf{c})_i \\ &= a_i (\epsilon_{ijk} b_j c_k) \\ &= \epsilon_{ijk} a_i b_j c_k.\end{aligned}$$

EXAMPLE

Example

We now show

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}.$$

$$\begin{aligned}\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) &= \epsilon_{ijk} a_i b_j c_k && \text{(Scalar triple product)} \\ &= \epsilon_{kij} a_i b_j c_k && \text{(using } \epsilon_{ijk} = \epsilon_{kij} \text{)} \\ &= (\epsilon_{kij} a_i b_j) c_k \\ &= (\mathbf{a} \times \mathbf{b})_k c_k \\ &= (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}.\end{aligned}$$

NEXT TIME . . .

Next time...

- More on the Alternating Tensor
- The relationship between δ_{ij} and ϵ_{ijk}