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Chapter 1: Suffix Notation



Today: Chapter 1�Su�x Notation

1. Su�x Notation

2. The Kronecker Delta

3. The Alternating Tensor

4. The relationship between δij and ϵijk
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Reminder



Recall: Kronecker delta

De�nition.

The Kronecker delta δij is de�ned by

δij =

{
1 if i = j,
0 if i ̸= j.

Properties

Substitution tensor:

δijaj = ai,

δjiaj = ai.

Dot product:

a · b = δijaibj .
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Recall: Alternating tensor

De�nition.

The alternating tensor ϵijk is de�ned by

ϵijk =


0 if any of i, j, k are equal,

+1 if (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1 if (i, j, k) = (1, 3, 2), (2, 1, 3) or (3, 2, 1).

Properties

In the following, we are using vector notation:

ϵijk keeps unchanged if indices are reordered by a cyclic

permutation: ϵijk = ϵjki = ϵkij .

The sign of ϵijk changes if any two of the su�ces are

interchanged: ϵijk = −ϵjik.
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Relations of alternating tensors

Relations of alternating tensors

The alternating tensor ϵijk is related to

The cross product of two vectors:

(a× b)i = ϵijkajbk.

The determinant of 3× 3 matrices:

|M | = ϵijkM1iM2jM3k, (row)

|M | = ϵijkMi1Mj2Mk3. (column)

The scalar triple product:

a · (b× c)

that we will consider in the next slides.
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More on ϵijk



The alternating tensor and the Scalar

Triple Product

De�nition.

The scalar triple product is a · (b× c).

Su�x notation

Let us write the scalar triple product in su�x notation.

Recall that the cross product and the alternating tensor are

related:

(b× c)i = ϵijkbjck.

Thus,
a · (b× c) = ai(b× c)i

= ai(ϵijkbjck)

= ϵijkaibjck.
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Example

Example

Let us use the scalar triple product formula to show that

a · (b× c) = (a× b) · c.

a · (b× c) = ϵijkaibjck (Scalar triple product)

= ϵkijaibjck (using ϵijk = ϵkij)

= (ϵkijaibj)ck

= (a× b)kck

= (a× b) · c.
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Example from last time

Example from last time

In the previous slide, we used su�x notation to show

a · (b× c) = (a× b) · c.

We will now show the following using su�x notation

a · (b× c) = b · (c× a).
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Example

Example

Let us show

a · (b× c) = b · (c× a).

a · (b× c) = ϵijkaibjck (Scalar triple product)

= ϵjkiaibjck (using ϵijk = ϵjki)

= bjϵjkickai (just rearranging terms)

= bj(ϵjkickai)

= bj(c× a)j

= b · (c× a).
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Practical Question

Your turn!

Write the vector equation

a× b+ (a · d)c = e

in su�x notation.
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The Levi-Civita Symbol

The Levi-Civita Symbol

There is a more general symbol called the Levi-Civita Symbol:

ϵi1 i2 i3 ...in .

It is de�ned using the following rules:

If any two indices are interchanged the symbol is negated.

If any two indices are equal the symbol equals zero.

Thus, ϵijk is just the Levi-Civita symbol in 3D space.
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The relationship between δij
and ϵijk



Relating δij and ϵijk

Relating δij and ϵijk

One can relate deltas and epsilons as follows (su�x notation).

ϵijkϵkℓm = δiℓδjm − δimδjℓ.

Remark

There are four free indices i, j, ℓ,m.

k is a repeated dummy index, and is summed over.

This represents 81 equations!

(One for each choice of the quadruple i, j, ℓ,m.)
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Where does this relationship come from?

Let us show some cases

ϵijkϵkℓm = δiℓδjm − δimδjℓ.

Consider i = 1 and possible values for j.

If j = 1, ϵijk = ϵ11k = 0. This means that LHS is 0.

RHS is δ1ℓδ1m − δ1mδ1ℓ =0, as terms cancel.

If j = 2, then ϵijk = ϵ12k = 0 unless k = 3.

When k = 3, the term ϵkℓm is zero unless (ℓ,m) = (1, 2) or
(ℓ,m) = (2, 1). Thus,

ϵijkϵkℓm = ϵ12kϵkℓm =


1, if (ℓ,m) = (1, 2)

−1, if (ℓ,m) = (2, 1)

0, otherwise .

12 36



Where does this relationship come from?

Let us show some cases

ϵijkϵkℓm = δiℓδjm − δimδjℓ.

For i = 1, j = 2, k = 3, we have

ϵijkϵklm = ϵ12kϵkℓm =


1, if (ℓ,m) = (1, 2)

−1, if (ℓ,m) = (2, 1)

0, otherwise .

The RHS is

δ1ℓδ2m − δ1mδ2ℓ =


1, if (ℓ,m) = (1, 2)

−1, if (ℓ,m) = (2, 1)

0, otherwise .
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Example 1

Example 1

Use the relationship
ϵijkϵkℓm = δiℓδjm − δimδjℓ.

to show that

(a× (b× c))i = (a · c)bi − (a · b)ci.

In fact, we know that the cross product is given by

(v × u)i = ϵijkvjuk.

Thus
(a× (b× c))i = ϵijkaj(b× c)k

= ϵijkajϵkℓmbℓcm

= ϵijkϵkℓmajbℓcm.
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Example 1

Example 1

Now, we use the relationship

ϵijkϵkℓm = δiℓδjm − δimδjℓ.

and get

(a× (b× c))i = ϵijkϵkℓmajbℓcm

= (δiℓδjm − δimδjℓ)ajbℓcm

= δiℓδjmajbℓcm − δimδjℓajbℓcm (expand)

= amδiℓbℓcm − aℓδimbℓcm (e.g. δjmaj = am)

= ambicm − aℓbℓci, (e.g. δiℓbℓ = bi)

= (a · c)bi − (a · b)ci.
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Practical Question

Your turn!

Simplify the following expressions (that are in su�x notation).

1. δijδjkδki,

2. ϵijkϵkℓmϵmni.
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Suffix notation and ranks

Intuition: What is the rank of a tensor?

Key idea: The number of free indices determines the rank (or

order) of a tensor.

0 free indices ⇒ rank-0 tensor (a scalar);

1 free index ⇒ rank-1 tensor (a vector);

2 free indices ⇒ rank-2 tensor (a matrix);

. . .

Important remark

This is only an intuition. Later we will see that an object must

satisfy additional transformation properties to genuinely qualify as

a tensor. So this should not be taken as a formal de�nition of rank.
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Vector differential opera-

tors



Scalar and vector fields

De�nition

A scalar �eld is a map that assigns a real number to every

point in space.

ϕ : Rn → R

A vector �eld is a map that assigns a vector to every point

in space.

ψ : Rn → Rn
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Differential Operators

Di�erential Operators

We will consider three di�erential operators:

The gradient

The divergence

The curl

Each can be expressed in su�x notation to give more compact

formulations and easier calculations.

To do this we re-label the Cartesian coordinate system (x, y, z) as

(x1, x2, x3).
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The Gradient

De�nition.

The gradient of a scalar �eld is

∇f =

(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
.

Remark.

The i-th component of the gradient is the partial derivative

with respect to xi.

So in su�x notation we can simply write

[∇f ]i =
∂f

∂xi
.

The gradient of a scalar has one free index i, indicating the

result is a vector quantity.
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The Gradient-visualisation

Consider �rst the gradient of a scalar �eld, ∇f :

∇f =

(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
.

E.g. the gradient of scalar �eld

f(x, y) = −(cos2 x+ cos2 y)2 is
shown by the vector �eld in the

bottom plane.
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Example: The Gradient

Example: The Gradient

Let us �nd the gradient of

ϕ(x1, x2, x3) = 3x1x
3
2 − x22x

2
3

at the point P = (−1, 1, 2).

∇ϕ =

(
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
,

=
(
3x32, 9x1x

2
2 − 2x2x

2
3, −2x22x3

)
.
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Example: The Gradient-Part 2

Example: The Gradient

∇ϕ =

(
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
=

(
3x32, 9x1x

2
2 − 2x2x

2
3, −2x22x3

)
.

Thus, at P = (−1, 1, 2) we have

∇ϕ|(−1,1,2) =
(
3x32, 9x1x

2
2 − 2x2x

2
3, −2x22x3

)
(−1,1,2)

=
(
3(1)3, 9(−1)(1)2 − 2(1)(2)2, −2(1)2(2)

)
,

= (3,−17,−4)

= 3i− 17j− 4k.

Note that i, j, k are the unit vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1)
respectively.
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Task: The Gradient

Your turn!

Find the gradient ∇ϕ of

ϕ(x1, x2, x3) =
1

2
x22x

3
3 − 3x1x2 + x52x3 + 1

at the point P = (3, 1, 0).
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The Divergence

De�nition.

The divergence of a vector �eld u is

∇ · u =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

=
∂uj
∂xj

= ∇iui,

Remark.

There is a dummy index j indicating the summation over

j = 1, 2, 3.

No free indices indicates the divergence of a vector is a

scalar quantity.
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The Divergence - visualisation

The Divergence

The divergence of a vector �eld u is

∇ · u =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

=
∂uj
∂xj

= ∇iui,

E.g. divA⃗ > 0⇝ source or divA⃗ < 0⇝ sink
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Example: The Divergence

Example: The Divergence

Let us �nd ∇ ·A at the point Q = (1, 1, 1) for

A = x21x
2
3i− 2x22x

2
3j+ x1x

2
2x3k.

∇ ·A =

(
∂

∂x1
i+

∂

∂x2
j+

∂

∂x3
k

)
·
(
x21x

2
3i− 2x22x

2
3j+ x1x

2
2x3k

)
=

∂

∂x1

(
x21x

2
3

)
+

∂

∂x2

(
−2x22x

2
3

)
+

∂

∂x3

(
x1x

2
2x3

)
= 2x1x

2
3 − 4x2x

2
3 + x1x

2
2.
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Example: The Divergence - Part 2

Example: The Divergence

Thus, at Q = (1, 1, 1) we have

[∇ ·A](1,1,1) =
[
2x1x

2
3 − 4x2x

2
3 + x1x

2
2

]
(1,1,1)

,

= 2(1)(1)2 − 4(1)(1)2 + (1)(1)2

= −1.

The divergence of a vector �eld is in fact a scalar quantity.
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Task: The Divergence

Your turn!

Find ∇ ·A at the point Q = (2, 1, 2) for

A =
1

2
x31x2i− (4x1x

5
2 + 1)j+ x2x

3
3k.
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The Curl

De�nition.

The curl of a vector �eld u is

∇× u =

∣∣∣∣∣∣
i j k
∂

∂x1

∂
∂x2

∂
∂x3

u1 u2 u3

∣∣∣∣∣∣
=

(
∂u3
∂x2

− ∂u2
∂x3

,
∂u1
∂x3

− ∂u3
∂x1

,
∂u2
∂x1

− ∂u1
∂x2

)
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Reminder: Cross product and alternating

tensor

Because the curl uses the cross product, we can write it using

the alternating tensor.

Reminder: alternating tensor

The alternating tensor ϵijk is de�ned by

ϵijk =


0 if any of i, j, k are equal,
+1 if (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2),
−1 if (i, j, k) = (1, 3, 2), (2, 1, 3) or (3, 2, 1).

Reminder: Alternating tensor and cross product

Recall that

(u× v)i = ϵijkujvk.
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Curl and cross product

Curl and cross product

The components of the curl are then

[∇× u]i = ϵijk∇juk = ϵijk
∂uk
∂xj

.

Remark.

The dummy indices j and k indicate a double sum.

The free index i indicates the curl of a vector is a vector

quantity.
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Example: The Curl

Example: The Curl

Let us �nd the curl of

A =
1

2
x31x2i+ (4x1x

5
2 + 1)j+ x2x

3
3k

at the point Q = (2, 1, 2).

∇×A =

[
∂

∂x2

(
x2x

3
3

)
− ∂

∂x3

(
4x1x

5
2 + 1

)]
i

−
[
∂

∂x1

(
x2x

3
3

)
− ∂

∂x3

(
1

2
x31x2

)]
j

+

[
∂

∂x1

(
4x1x

5
2 + 1

)
− ∂

∂x2

(
1

2
x31x2

)]
k

= x33i+ 0j+

(
4x52 −

1

2
x31

)
k.
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Example: The Curl - Part 2

Example: The Curl

Thus, at Q = (2, 1, 2) we have

∇×A|(2,1,2) =
[
x33i+ 0j+

(
4x52 −

1

2
x31

)
k

]
(2,1,2)

= 8i+ 0j+ 0k

= (8, 0, 0).
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Task: The Curl

Your turn!

Suppose

A = x21x
2
3i− 2x22x

2
3j+ x1x2x3k.

Find ∇×A at the point Q = (1, 1, 1).
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Next time . . .

Next time...

Vector di�erential operators,

Combinations of grad, div and curl.
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