

TENSOR ANALYSIS

SLIDES WEEK 20 – LECTURE 1

PAULA LINS

2025/26

CHAPTER 1: SUFFIX NOTATION

Today: Chapter 1–Suffix Notation

1. Suffix Notation
2. The Kronecker Delta
3. The Alternating Tensor
4. The relationship between δ_{ij} and ϵ_{ijk}

REMINDER

RECALL: KRONECKER DELTA

Definition.

The **Kronecker delta** δ_{ij} is defined by

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Properties

■ Substitution tensor:

$$\delta_{i j} a_j = a_i,$$

$$\delta_{j i} a_j = a_i.$$

■ Dot product:

$$\mathbf{a} \cdot \mathbf{b} = \delta_{ij} a_i b_j.$$

RECALL: ALTERNATING TENSOR

Definition.

The **alternating tensor** ϵ_{ijk} is defined by

$$\epsilon_{ijk} = \begin{cases} 0 & \text{if any of } i, j, k \text{ are equal,} \\ +1 & \text{if } (i, j, k) = (1, 2, 3), (2, 3, 1) \text{ or } (3, 1, 2), \\ -1 & \text{if } (i, j, k) = (1, 3, 2), (2, 1, 3) \text{ or } (3, 2, 1). \end{cases}$$

Properties

In the following, we are using **vector notation**:

- ϵ_{ijk} keeps **unchanged** if indices are reordered by a **cyclic permutation**:

$$\epsilon_{ijk} = \epsilon_{jki} = \epsilon_{kij}.$$

- The sign of ϵ_{ijk} **changes** if any two of the suffices are **interchanged**:

$$\epsilon_{ijk} = -\epsilon_{jik}.$$

RELATIONS OF ALTERNATING TENSORS

Relations of alternating tensors

The alternating tensor ϵ_{ijk} is related to

- The cross product of two vectors:

$$(\mathbf{a} \times \mathbf{b})_i = \epsilon_{ijk} a_j b_k.$$

- The determinant of 3×3 matrices:

$$|M| = \epsilon_{ijk} M_{1i} M_{2j} M_{3k}, \quad (\text{row})$$

$$|M| = \epsilon_{ijk} M_{i1} M_{j2} M_{k3}. \quad (\text{column})$$

- The scalar triple product:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

that we will consider in the next slides.

MORE ON ϵ_{ijk}

THE ALTERNATING TENSOR AND THE SCALAR TRIPLE PRODUCT

Definition.

The **scalar triple product** is $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$.

Suffix notation

Let us write the **scalar triple product** in suffix notation.

Recall that the **cross product** and the **alternating tensor** are related:

$$(\mathbf{b} \times \mathbf{c})_i = \epsilon_{ijk} b_j c_k.$$

Thus,

$$\begin{aligned}\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) &= a_i (\mathbf{b} \times \mathbf{c})_i \\ &= a_i (\epsilon_{ijk} b_j c_k) \\ &= \epsilon_{ijk} a_i b_j c_k.\end{aligned}$$

EXAMPLE

Example

Let us use the scalar triple product formula to show that

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}.$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \epsilon_{ijk} a_i b_j c_k \quad (\text{Scalar triple product})$$

$$= \epsilon_{kij} a_i b_j c_k \quad (\text{using } \epsilon_{ijk} = \epsilon_{kij})$$

$$= (\epsilon_{kij} a_i b_j) c_k$$

$$= (\mathbf{a} \times \mathbf{b})_k c_k$$

$$= (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}.$$

EXAMPLE FROM LAST TIME

Example from last time

In the previous slide, we used suffix notation to show

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}.$$

We will now show the following using suffix notation

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}).$$

EXAMPLE

Example

Let us show

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}).$$

$$\begin{aligned}\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) &= \epsilon_{ijk} a_i b_j c_k && \text{(Scalar triple product)} \\ &= \epsilon_{jki} a_i b_j c_k && \text{(using } \epsilon_{ijk} = \epsilon_{jki} \text{)} \\ &= b_j \epsilon_{jki} c_k a_i && \text{(just rearranging terms)} \\ &= b_j (\epsilon_{jki} c_k a_i) \\ &= b_j (\mathbf{c} \times \mathbf{a})_j \\ &= \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}).\end{aligned}$$

PRACTICAL QUESTION

Your turn!

Write the vector equation

$$\mathbf{a} \times \mathbf{b} + (\mathbf{a} \cdot \mathbf{d})\mathbf{c} = \mathbf{e}$$

in suffix notation.

THE LEVI-CIVITA SYMBOL

The Levi-Civita Symbol

There is a more general symbol called the **Levi-Civita Symbol**:

$$\epsilon_{i_1 \ i_2 \ i_3 \ \dots i_n}.$$

It is defined using the following rules:

- If any two indices are interchanged the symbol is negated.
- If any two indices are equal the symbol equals zero.

Thus, ϵ_{ijk} is just the Levi-Civita symbol in 3D space.

THE RELATIONSHIP BETWEEN δ_{ij} AND ϵ_{ijk}

RELATING δ_{ij} AND ϵ_{ijk}

Relating δ_{ij} and ϵ_{ijk}

One can relate deltas and epsilons as follows (suffix notation).

$$\epsilon_{ijk}\epsilon_{k\ell m} = \delta_{i\ell}\delta_{jm} - \delta_{im}\delta_{j\ell}.$$

Remark

- There are **four** free indices i, j, ℓ, m .
- k is a repeated dummy index, and is summed over.
- This represents 81 equations!

(One for each choice of the quadruple i, j, ℓ, m .)

WHERE DOES THIS RELATIONSHIP COME FROM?

Let us show some cases

$$\epsilon_{ijk}\epsilon_{k\ell m} = \delta_{i\ell}\delta_{jm} - \delta_{im}\delta_{j\ell}.$$

Consider $i = 1$ and possible values for j .

- If $j = 1$, $\epsilon_{ijk} = \epsilon_{11k} = 0$. This means that LHS is 0. RHS is $\delta_{1\ell}\delta_{1m} - \delta_{1m}\delta_{1\ell} = 0$, as terms cancel.
- If $j = 2$, then $\epsilon_{ijk} = \epsilon_{12k} = 0$ unless $k = 3$.

When $k = 3$, the term $\epsilon_{k\ell m}$ is zero unless $(\ell, m) = (1, 2)$ or $(\ell, m) = (2, 1)$. Thus,

$$\epsilon_{ijk}\epsilon_{k\ell m} = \epsilon_{12k}\epsilon_{k\ell m} = \begin{cases} 1, & \text{if } (\ell, m) = (1, 2) \\ -1, & \text{if } (\ell, m) = (2, 1) \\ 0, & \text{otherwise} \end{cases}.$$

WHERE DOES THIS RELATIONSHIP COME FROM?

Let us show some cases

$$\epsilon_{ijk}\epsilon_{klm} = \delta_{i\ell}\delta_{jm} - \delta_{im}\delta_{j\ell}.$$

For $i = 1, j = 2, k = 3$, we have

$$\epsilon_{ijk}\epsilon_{klm} = \epsilon_{12k}\epsilon_{klm} = \begin{cases} 1, & \text{if } (\ell, m) = (1, 2) \\ -1, & \text{if } (\ell, m) = (2, 1) \\ 0, & \text{otherwise} . \end{cases}$$

The RHS is

$$\delta_{1\ell}\delta_{2m} - \delta_{1m}\delta_{2\ell} = \begin{cases} 1, & \text{if } (\ell, m) = (1, 2) \\ -1, & \text{if } (\ell, m) = (2, 1) \\ 0, & \text{otherwise} . \end{cases}$$

EXAMPLE 1

Example 1

Use the relationship

$$\epsilon_{ijk}\epsilon_{k\ell m} = \delta_{i\ell}\delta_{jm} - \delta_{im}\delta_{j\ell}.$$

to show that

$$(\mathbf{a} \times (\mathbf{b} \times \mathbf{c}))_i = (\mathbf{a} \cdot \mathbf{c})b_i - (\mathbf{a} \cdot \mathbf{b})c_i.$$

In fact, we know that the cross product is given by

$$(\mathbf{v} \times \mathbf{u})_i = \epsilon_{ijk}v_j u_k.$$

Thus

$$\begin{aligned} (\mathbf{a} \times (\mathbf{b} \times \mathbf{c}))_i &= \epsilon_{ijk}a_j(\mathbf{b} \times \mathbf{c})_k \\ &= \epsilon_{ijk}a_j\epsilon_{k\ell m}b_\ell c_m \\ &= \epsilon_{ijk}\epsilon_{k\ell m}a_jb_\ell c_m. \end{aligned}$$

EXAMPLE 1

Example 1

Now, we use the relationship

$$\epsilon_{ijk}\epsilon_{k\ell m} = \delta_{i\ell}\delta_{jm} - \delta_{im}\delta_{j\ell}.$$

and get

$$\begin{aligned}(\mathbf{a} \times (\mathbf{b} \times \mathbf{c}))_i &= \epsilon_{ijk}\epsilon_{k\ell m}a_j b_\ell c_m \\&= (\delta_{i\ell}\delta_{jm} - \delta_{im}\delta_{j\ell})a_j b_\ell c_m \\&= \delta_{i\ell}\delta_{jm}a_j b_\ell c_m - \delta_{im}\delta_{j\ell}a_j b_\ell c_m \quad (\text{expand}) \\&= a_m\delta_{i\ell}b_\ell c_m - a_\ell\delta_{im}b_\ell c_m \quad (\text{e.g. } \delta_{jm}a_j = a_m) \\&= a_m b_i c_m - a_\ell b_\ell c_i, \quad (\text{e.g. } \delta_{i\ell}b_\ell = b_i) \\&= (\mathbf{a} \cdot \mathbf{c})b_i - (\mathbf{a} \cdot \mathbf{b})c_i.\end{aligned}$$

PRACTICAL QUESTION

Your turn!

Simplify the following expressions (that are in suffix notation).

$$1. \delta_{ij}\delta_{jk}\delta_{ki},$$

$$2. \epsilon_{ijk}\epsilon_{k\ell m}\epsilon_{mni}.$$

SUFFIX NOTATION AND RANKS

Intuition: What is the rank of a tensor?

Key idea: The number of free indices determines the **rank** (or order) of a tensor.

- 0 free indices \Rightarrow rank-0 tensor (a **scalar**);
- 1 free index \Rightarrow rank-1 tensor (a **vector**);
- 2 free indices \Rightarrow rank-2 tensor (a **matrix**);
- ...

Important remark

This is only an **intuition**. Later we will see that an object must satisfy additional transformation properties to genuinely qualify as a tensor. So this should not be taken as a formal definition of rank.

VECTOR DIFFERENTIAL OPERATORS

Definition

- A **scalar field** is a map that assigns a **real number** to every point in space.

$$\phi : \mathbb{R}^n \rightarrow \mathbb{R}$$

- A **vector field** is a map that assigns a **vector** to every point in space.

$$\psi : \mathbb{R}^n \rightarrow \mathbb{R}^n$$

Differential Operators

We will consider three differential operators:

- The gradient
- The divergence
- The curl

Each can be expressed in suffix notation to give more compact formulations and easier calculations.

To do this we re-label the Cartesian coordinate system (x, y, z) as

$$(x_1, x_2, x_3).$$

THE GRADIENT

Definition.

The **gradient** of a scalar field is

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3} \right).$$

Remark.

- The i -th component of the gradient is the partial derivative with respect to x_i .
- So in suffix notation we can simply write

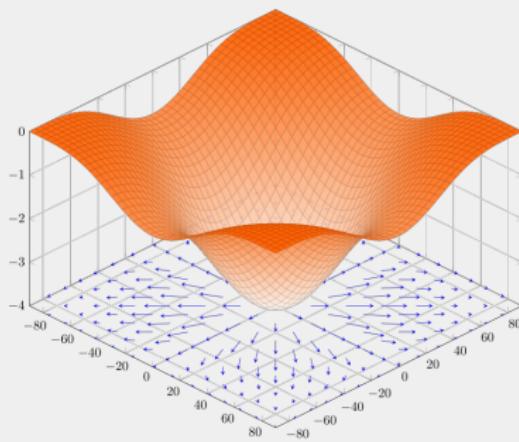
$$[\nabla f]_i = \frac{\partial f}{\partial x_i}.$$

- The gradient of a scalar has one **free index i** , indicating the result is a **vector quantity**.

THE GRADIENT-VISUALISATION

Consider first the gradient of a scalar field, ∇f :

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3} \right).$$



E.g. the gradient of scalar field $f(x, y) = -(\cos^2 x + \cos^2 y)^2$ is shown by the vector field in the bottom plane.

EXAMPLE: THE GRADIENT

Example: The Gradient

Let us find the gradient of

$$\phi(x_1, x_2, x_3) = 3x_1x_2^3 - x_2^2x_3^2$$

at the point $P = (-1, 1, 2)$.

$$\begin{aligned}\nabla\phi &= \left(\frac{\partial\phi}{\partial x_1}, \frac{\partial\phi}{\partial x_2}, \frac{\partial\phi}{\partial x_3} \right), \\ &= (3x_2^3, 9x_1x_2^2 - 2x_2x_3^2, -2x_2^2x_3).\end{aligned}$$

EXAMPLE: THE GRADIENT-PART 2

Example: The Gradient

$$\nabla \phi = \left(\frac{\partial \phi}{\partial x_1}, \frac{\partial \phi}{\partial x_2}, \frac{\partial \phi}{\partial x_3} \right) = (3x_2^3, 9x_1x_2^2 - 2x_2x_3^2, -2x_2^2x_3).$$

Thus, at $P = (-1, 1, 2)$ we have

$$\begin{aligned}\nabla \phi|_{(-1,1,2)} &= (3x_2^3, 9x_1x_2^2 - 2x_2x_3^2, -2x_2^2x_3)|_{(-1,1,2)} \\ &= (3(1)^3, 9(-1)(1)^2 - 2(1)(2)^2, -2(1)^2(2)) \\ &= (3, -17, -4) \\ &= 3\mathbf{i} - 17\mathbf{j} - 4\mathbf{k}.\end{aligned}$$

Note that $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are the unit vectors $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$ respectively.

TASK: THE GRADIENT

Your turn!

Find the gradient $\nabla\phi$ of

$$\phi(x_1, x_2, x_3) = \frac{1}{2}x_2^2x_3^3 - 3x_1x_2 + x_2^5x_3 + 1$$

at the point $P = (3, 1, 0)$.

THE DIVERGENCE

Definition.

The **divergence** of a vector field \mathbf{u} is

$$\nabla \cdot \mathbf{u} = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} = \frac{\partial u_j}{\partial x_j} = \nabla_i u_i,$$

Remark.

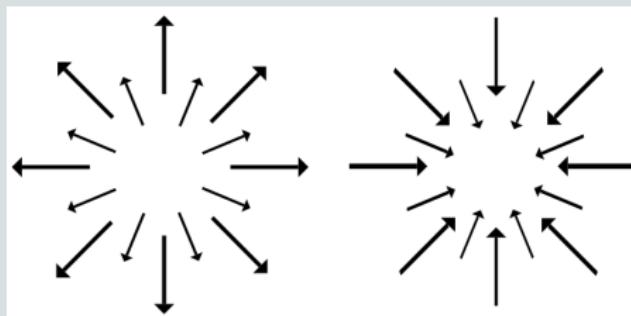
- There is a dummy index j indicating the summation over $j = 1, 2, 3$.
- **No free indices** indicates the divergence of a vector is a **scalar quantity**.

THE DIVERGENCE - VISUALISATION

The Divergence

The divergence of a vector field \mathbf{u} is

$$\nabla \cdot \mathbf{u} = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} = \frac{\partial u_j}{\partial x_j} = \nabla_i u_i,$$



E.g. $\operatorname{div} \vec{A} > 0 \rightsquigarrow \text{source}$ or $\operatorname{div} \vec{A} < 0 \rightsquigarrow \text{sink}$

EXAMPLE: THE DIVERGENCE

Example: The Divergence

Let us find $\nabla \cdot \mathbf{A}$ at the point $Q = (1, 1, 1)$ for

$$\mathbf{A} = x_1^2 x_3^2 \mathbf{i} - 2x_2^2 x_3^2 \mathbf{j} + x_1 x_2^2 x_3 \mathbf{k}.$$

$$\begin{aligned}\nabla \cdot \mathbf{A} &= \left(\frac{\partial}{\partial x_1} \mathbf{i} + \frac{\partial}{\partial x_2} \mathbf{j} + \frac{\partial}{\partial x_3} \mathbf{k} \right) \cdot (x_1^2 x_3^2 \mathbf{i} - 2x_2^2 x_3^2 \mathbf{j} + x_1 x_2^2 x_3 \mathbf{k}) \\ &= \frac{\partial}{\partial x_1} (x_1^2 x_3^2) + \frac{\partial}{\partial x_2} (-2x_2^2 x_3^2) + \frac{\partial}{\partial x_3} (x_1 x_2^2 x_3) \\ &= 2x_1 x_3^2 - 4x_2 x_3^2 + x_1 x_2^2.\end{aligned}$$

EXAMPLE: THE DIVERGENCE - PART 2

Example: The Divergence

Thus, at $Q = (1, 1, 1)$ we have

$$\begin{aligned} [\nabla \cdot \mathbf{A}]_{(1,1,1)} &= [2x_1x_3^2 - 4x_2x_3^2 + x_1x_2^2]_{(1,1,1)}, \\ &= 2(1)(1)^2 - 4(1)(1)^2 + (1)(1)^2 \\ &= -1. \end{aligned}$$

The divergence of a vector field is in fact a **scalar quantity**.

TASK: THE DIVERGENCE

Your turn!

Find $\nabla \cdot \mathbf{A}$ at the point $Q = (2, 1, 2)$ for

$$\mathbf{A} = \frac{1}{2}x_1^3x_2\mathbf{i} - (4x_1x_2^5 + 1)\mathbf{j} + x_2x_3^3\mathbf{k}.$$

THE CURL

Definition.

The curl of a vector field \mathbf{u} is

$$\begin{aligned}\nabla \times \mathbf{u} &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ u_1 & u_2 & u_3 \end{vmatrix} \\ &= \left(\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3}, \frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1}, \frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right)\end{aligned}$$

REMINDER: CROSS PRODUCT AND ALTERNATING TENSOR

Because the **curl** uses the **cross product**, we can write it using the alternating tensor.

Reminder: alternating tensor

The **alternating tensor** ϵ_{ijk} is defined by

$$\epsilon_{ijk} = \begin{cases} 0 & \text{if any of } i, j, k \text{ are equal,} \\ +1 & \text{if } (i, j, k) = (1, 2, 3), (2, 3, 1) \text{ or } (3, 1, 2), \\ -1 & \text{if } (i, j, k) = (1, 3, 2), (2, 1, 3) \text{ or } (3, 2, 1). \end{cases}$$

Reminder: Alternating tensor and cross product

Recall that

$$(\mathbf{u} \times \mathbf{v})_i = \epsilon_{ijk} u_j v_k.$$

Curl and cross product

The components of the curl are then

$$[\nabla \times \mathbf{u}]_i = \epsilon_{ijk} \nabla_j u_k = \epsilon_{ijk} \frac{\partial u_k}{\partial x_j}.$$

Remark.

- The dummy indices j and k indicate a double sum.
- The free index i indicates the curl of a vector is a **vector quantity**.

EXAMPLE: THE CURL

Example: The Curl

Let us find the curl of

$$\mathbf{A} = \frac{1}{2}x_1^3x_2\mathbf{i} + (4x_1x_2^5 + 1)\mathbf{j} + x_2x_3^3\mathbf{k}$$

at the point $Q = (2, 1, 2)$.

$$\begin{aligned}\nabla \times \mathbf{A} &= \left[\frac{\partial}{\partial x_2} (x_2x_3^3) - \frac{\partial}{\partial x_3} (4x_1x_2^5 + 1) \right] \mathbf{i} \\ &\quad - \left[\frac{\partial}{\partial x_1} (x_2x_3^3) - \frac{\partial}{\partial x_3} \left(\frac{1}{2}x_1^3x_2 \right) \right] \mathbf{j} \\ &\quad + \left[\frac{\partial}{\partial x_1} (4x_1x_2^5 + 1) - \frac{\partial}{\partial x_2} \left(\frac{1}{2}x_1^3x_2 \right) \right] \mathbf{k} \\ &= x_3^3\mathbf{i} + 0\mathbf{j} + \left(4x_2^5 - \frac{1}{2}x_1^3 \right) \mathbf{k}.\end{aligned}$$

EXAMPLE: THE CURL - PART 2

Example: The Curl

Thus, at $Q = (2, 1, 2)$ we have

$$\begin{aligned}\nabla \times \mathbf{A}|_{(2,1,2)} &= \left[x_3^3 \mathbf{i} + 0\mathbf{j} + \left(4x_2^5 - \frac{1}{2}x_1^3 \right) \mathbf{k} \right]_{(2,1,2)} \\ &= 8\mathbf{i} + 0\mathbf{j} + 0\mathbf{k} \\ &= (8, 0, 0).\end{aligned}$$

TASK: THE CURL

Your turn!

Suppose

$$\mathbf{A} = x_1^2 x_3^2 \mathbf{i} - 2x_2^2 x_3^2 \mathbf{j} + x_1 x_2 x_3 \mathbf{k}.$$

Find $\nabla \times \mathbf{A}$ at the point $Q = (1, 1, 1)$.

NEXT TIME . . .

Next time...

- Vector differential operators,
- Combinations of grad, div and curl.