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CHAPTERS 2 AND 3




Today: Chapter 2—Vector Differential Operators

m Vector differential operators
m Combinations of grad, div and curl

m Grad, div and curl applied to functions

Today: Chapter 3-Local Coordinate Transform

Preliminaries,
Dual bases,
Covariant and contravariant components of a vector,

The transformation rule,

o B9 o=

The relationship between covartiant and contravariant
components, and

6. Arc length and the metric tensor.




REMINDER




REMINDER: DIFFERENTIAL OPERATORS

Reminder: Differential operators

Recall that 5 5 5
V=|+— —, .
81‘1 8:1:2 8163
We have considered three differential operators:
m The gradient V f,

m the divergence V - u, and

m the curl V x u,

where f denotes a scalar field and u denotes a vector field.




POSITION VECTOR AND DIFFERENTIAL
OPERATORS

Position vector
The position vector is
r = (1,72, 73).

We denote its magnitude by r = |r|.

Position vector and differential operators

We have computed the gradient of r, and the divergence and the
curl of r:

mVr=7,
BV .r=3, and

= V xr=(0,0,0).




SUMMARY: COMBINATIONS OF GRAD, DIV, CURL

Summary: Combinations of grad, div, curl

1. Div Grad: 82f
_ _ o2

2. Curl Grad:

Vx(Vf)=0,
3. Grad Div: o

- Uj

4. Div Curl:

V- (Vxu)=0,
5. Curl Curl:



GRAD, DIV & CURL APPLIED TO
FUNCTIONS




SUFFIX NOTATION & OPERATING OF PRODUCTS OF
FUNCTIONS

Suffix notation & operating of products of functions

Suffix notation is useful for computing operations on products of
functions.

For instance

m scalar products fg,
m vector products u X v,

m combinations of the two fu




GRAD, DIV & CURL APPLIED TO FUNCTIONS

Next slides

In the following slides we will consider the following operations

1. Gradient of a scalar product [V(fg)];,

2. Divergence of a scalar vector product V - (fu),
3. Curl of a scalar vector product V x (fu),

4. Divergence of a vector product V - (u x v),

5. Curl of a vector product V x (u x v), and

6. Gradient of a dot product V(u - v).




1. GRADIENT OF A SCALAR PRODUCT

1. Gradient of a scalar product

The gradient of a scalar product fg is

)
oz, (f9)

_ 99 Of
_fafﬂi-l_gami

= [fVg+ gV fli.

[V(f9)li =

(Product rule)

Thus,
V(fg) = fVg+gV/.

This is an extension of the product rule for differentiation.




2. DIVERGENCE OF A SCALAR VECTOR PRODUCT

2. Divergence of a scalar vector product

The divergence of a vector product fu is

0
(9.%5

V- (fu) = 5 —(fui)
(Product rule)

=(Vf)-u+ f(V-u).




3. CURL OF A SCALAR VECTOR PRODUCT

3. Curl of a scalar vector product

The curl of a scalar vector product fu is

[V X (fu)]l = zyk (f k) ((V X W)z = eijkvjwk)
8f Ouy,
= GijkaTjuk + feijka—xj (Product rule)
3’U,k
= €k (V) jue + f (61 k—)
J J J al‘j

=[Vfxu+ f(V xu).




4. DIVERGENCE OF A VECTOR PRODUCT

4. Divergence of a vector product

The divergence of a vector product uxv is

0
V-(uxv)= %(eijkujvk)

Ou; Ovy.
= ezjka Uk + €ijkUj— 1

. 8u (%k
= ekz]a Vg — Ejik% Uj

=(Vxu)-v—(Vxv) u




5. CURL OF A VECTOR PRODUCT

5. Curl of a vector product

The curl of a vector product uxv is

[V X (u X V)]z = €ijk 7 . (ll X V)k ((V X W)l = eijkvjwk)

0
= €ijk 5 8CCJ (fkemuévm)

0
= (5iZ5jm 6lm5ﬂ)a (UZ'Um)
Lj
0 0
= oz, 5 (uiv)) = oz = (ujvi) (0ija; = ai)
811] . ou; u~%— Ouy
oz;  Uom;  Uom; 0w

= u;—



5. CURL OF A VECTOR PRODUCT-PART 2

5. Curl of a vector product—Part 2

The curl of a vector product u X v is

_ 8’1)]' ; 6u2 ' 81;1- Ouj
[V X (uxv)]; =y oz, v; oz, u; Bz U4 9z

=[u(V-v)li+ ng—;: ~ [(u- V)V — i

To simplify notation, we define a new operator

0

u-V:uj%j.

We then obtain
Vxuxv)i=uwV-v)+(v-V)u—(u-V)v—-v(V-u).




6. GRADIENT OF A DOT PRODUCT

6. Gradient of a dot product

The gradient of a dot product u - v was the content of Practical
Question 2.4.

More precisely,

Viu-v)=ux(Vxv)+vx(Vxu)+(u-V)v+ (v-V)u




SUMMARY COMBINING DIFFERENTIAL OPERATORS
- PART 1

Summary Combining differential operators

1. Gradient of a scalar product
V(fg) = fVg+gV/.
2. Divergence of a scalar vector product
V- (fu) = (Vf) -u+ f(V-u).
3. Curl of a scalar vector product

[V x (fu)];=[Vfxu+ fV x ul;.




SUMMARY COMBINING DIFFERENTIAL OPERATORS
- PART 2

Summary Combining differential operators - Part 2

4. Divergence of a vector product
Vifuxv)=(Vxu)-v—(Vxv) u
5. Curl of a vector product
Vxuxv)=uV-v)+(v-V)u—(u-V)v—-v(V-u).
6. Gradient of a dot product

Viu-v)=ux(Vxv)+vx(Vxu)+ (u-V)v+(v:-V)u.




CHAPTER 3: PRELIMINARIES




COORDINATE SYSTEMS

Coordinate Systems

Coordinate systems are defined by a set of basis vectors.

Vector basis is a set of vectors vy, vo, vy that

m are linearly independent: the only scalars Ai, Ag, Ag
satisfying
A1V + Agvag + A3vg = (0, 0, 0)

are)\1=>\2=/\3=0.

m span the space: Every vector v can be written as a linear
combination

V = [1V1 + [4aV2 4 U3Vvs.




COORDINATE SYSTEMS - EXAMPLE LI

Example - LI

The following vectors form a basis for R3:

vi = (1,0,0), vo = (2,1,0), v3 = (0,0,1).

m Linearly Independent: Suppose that
A1vi + Ae2va + Asvsg = (0,0,0).
Then
(0,0,0) =A1(1,0,0) + A2(2,1,0) + A3(0,0,1)
= (A1,0,0) 4 (2X2, A2,0) + (0,0, A3)
= (M + 2X2, A2, A3).

We see that A\; = Ay = A3 = 0. Thus, these vectors are LI.

17 32



COORDINATE SYSTEMS - EXAMPLE SPAM

Example - Span

Notice that any vector u = (u1, ug,u3) can be written as

u = (u1 — 2us)(1,0,0) 4 ua(2, 1,0) + us(0,0, 1)

= (u1 — 2u2) vy + ugvy + uzvs.

Thus, v1, vo, and v3 span the space.




ORTHOGONAL AND ORTHONORMAL COORDINATE
SYSTEMS

Definitions

m A coordinate system is orthogonal if its basis vectors
intersect at 90° angles, i.e.,

v;-v; =0, fori# j.

m A coordinate system is orthonormal if it is orthogonal and
its basis vectors have magnitude 1, i.e.,

» v;-v; =0, for i # j, and

> |V1| = \/V;- V; = 1.



CARTESIAN COORDINATE SYSTEM

Cartesian coordinate system

The Cartesian coordinate system
i=(1,0,0), j=1(0,1,0), k=(0,0,1)

is an example of orthonormal coordinate system.




EXAMPLE — COORDINATE SYSTEM

The coordinate system
v=(1,1,0), u=(-1,1,0), w=(0,0,1)

is an example of orthogonal coordinate system:
m We can show they are LI and span the space.
m We have

(1,1,0)- (=1,1,0) =1-(=1)+1-140-0=0
(1,1,0)-(0,0,1) =1-0+1-040-1=0
(=1,1,0)- (0,0,1) = —1-0+1-0+0-1 = 0.

However, this is not an orthonormal coordinate system because

1(1,1,0)] = /(1,1,0) - (1,1,0) =v/1- 1 +1-1+0-0 = V2 # 1.




GENERALISED COORDINATE SYSTEMS

Definition

Generalised coordinate systems do not necessarily have
orthogonal coordinate bases.

In the previous slides we showed the the following are basis vectors
Vi = (17070)7 V2 = (27 170)? V3 = (0707 1)
We have

(1,0,0)-(2,1,0)=1-2+0-140-0=2 0.

Thus, this is not an orthogonal coordinate system (and hence not
an orthonormal one).




CARTESIAN COORDINATE SYSTEM IN 2D

Cartesian coordinate system in 2D

Define a 2D coordinate system by the plane (x7,x2).

(For instance, you can think of (x1,x2) as two orthogonal axes.)

Then, rotate (z1,x2) by some angle 6 to obtain a new coordinate

system (2], z5).

Y




CARTESIAN COORDINATE SYSTEM IN 2D - PART 2

Cartesian coordinate system in 2D

Then, any point P in (x1,22) is related to a point in (2, z4) via

xy = 21 cos 6 + z28in 6,

:c'2 = x9cosf — x1sinb,

T2
y

I x




CARTESIAN COORDINATE SYSTEM IN 2D

Cartesian coordinate system in 2D

Again, when we rotate (z1,22) by some angle 6, we obtain a new

coordinate system (2}, z4), and any point P in (z1,z2) is related to
a point in (2], x5) via

2] = w1 cosf + wosinb,

xh = wycosf — x1 sinb,

or in matrix form

zy \ ([ cosf sinf x1
xzh )\ —sinf cosf Ty )




ROTATION MATRIX

Definition.

Define the rotation matrix by

I_ cosf) sinf _( L1 L2
~\ —sinf cos@ )\ Loy Loy )~

Cartesian coordinate system in 2D

The new coordinate system (2, z5) obtained by rotating (z1,22) is

/

z7 = L1z1 + Liozo = Lyjzj,
/

Ty = Lojx1 + Lagxo = Lojxj,

Or more compactly in suffix notation:

/ — .. .
z; = Lijx;.



PROPERTIES OF THE ROTATION MATRIX

Properties of the Rotation Matrix

The rotation matrix
I_ cosf sinf
~ \ —sinf cosf

has important properties. For instance, what can we say about the
inverse and the transpose of this matrix?

The inverse is simply a rotation through —6. Thus

sinf cosf

o= S ()




PROPERTIES OF THE ROTATION MATRIX - PART 2

Properties of the Rotation Matrix

Since LT = L', we have LL” = I and LT L = I, where I is the
identity matrix.

In suffix notation we have
LijL,]rk = ;. that is Liijj = 0jk
Lz;-ij = ;. that is LjiLj, = Oik-

Recall the transformation
/
XT; = Lijxj-

We want to find the inverse transformation. Multiply both sides
by le

/
Likl'i = LikLij.’L‘j = (Skj:L‘j = Tk-




PROPERTIES OF THE ROTATION MATRIX - PART 3

Properties of the Rotation Matrix

That is, the inverse transformation of
' — L.
Ly = LijTj

/
T; = Ljiil,‘j.

Remark:

The previous formulas show the following.
m If a vector v can be writen as (v1,v2) in the coordinate system
(x1,x2), one can use the formula
vj = Lijv;
to find its coordinates (v}, v) in (2}, %).

m If you know (v],v}), you can find (v1,v2) by applying the
formula




PROPERTIES OF THE ROTATION MATRIX - PART 4

Another Property of the Rotation Matrix

The determinant of the rotation matrix is

|L| = ’( cos 81119)‘ = cos? 0 +sin® ) = 1.

—sinf cos@




CARTESIAN COORDINATE SYSTEM IN 3D

What about dimension 37

Next lecture

m In the next lecture, we will generalise the concept of rotating
coordinate systems for the case of dimension 3.

m We will mostly consider this case.

m After that, we will be ready to define a tensor!




NEXT LECTURE

m Chapter 3: Local Coordinate Transform.

» Preliminaries - Part 2
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