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Chapters 2 and 3



Today: Chapter 2�Vector Di�erential Operators

Vector di�erential operators

Combinations of grad, div and curl

Grad, div and curl applied to functions

Today: Chapter 3�Local Coordinate Transform

1. Preliminaries,

2. Dual bases,

3. Covariant and contravariant components of a vector,

4. The transformation rule,

5. The relationship between covartiant and contravariant

components, and

6. Arc length and the metric tensor.
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Reminder



Reminder: Differential operators

Reminder: Di�erential operators

Recall that

∇ =

(
∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
.

We have considered three di�erential operators:

The gradient ∇f ,

the divergence ∇ · u, and

the curl ∇× u,

where f denotes a scalar �eld and u denotes a vector �eld.
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Position vector and differential

operators

Position vector

The position vector is

r = (x1, x2, x3).

We denote its magnitude by r = |r|.

Position vector and di�erential operators

We have computed the gradient of r, and the divergence and the

curl of r:

∇r = r
r ,

∇ · r = 3, and

∇× r = (0, 0, 0).
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Summary: Combinations of grad, div, curl

Summary: Combinations of grad, div, curl

1. Div Grad:

∇ · (∇f) =
∂2f

∂xj∂xj
= ∇2f,

2. Curl Grad:

∇× (∇f) = 0,

3. Grad Div:

[∇(∇ · u)]i =
∂2uj

∂xi∂xj
,

4. Div Curl:

∇ · (∇× u) = 0,

5. Curl Curl:

∇2u = ∇(∇ · u)−∇× (∇× u).
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Grad, div & curl applied to

functions



Suffix notation & operating of products of

functions

Su�x notation & operating of products of functions

Su�x notation is useful for computing operations on products of

functions.

For instance

scalar products fg,

vector products u× v,

combinations of the two fu
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Grad, div & curl applied to functions

Next slides

In the following slides we will consider the following operations

1. Gradient of a scalar product [∇(fg)]i,

2. Divergence of a scalar vector product ∇ · (fu),

3. Curl of a scalar vector product ∇× (fu),

4. Divergence of a vector product ∇ · (u× v),

5. Curl of a vector product ∇× (u× v), and

6. Gradient of a dot product ∇(u · v).
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1. Gradient of a scalar product

1. Gradient of a scalar product

The gradient of a scalar product fg is

[∇(fg)]i =
∂

∂xi
(fg)

= f
∂g

∂xi
+ g

∂f

∂xi
(Product rule)

= [f∇g + g∇f ]i.

Thus,

∇(fg) = f∇g + g∇f.

This is an extension of the product rule for di�erentiation.
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2. Divergence of a scalar vector product

2. Divergence of a scalar vector product

The divergence of a vector product fu is

∇ · (fu) = ∂

∂xi
(fui)

=
∂f

∂xi
ui + f

∂ui
∂xi

(Product rule)

= (∇f) · u+ f(∇ · u).
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3. Curl of a scalar vector product

3. Curl of a scalar vector product

The curl of a scalar vector product fu is

[∇× (fu)]i = ϵijk
∂

∂xj
(fuk) ((v ×w)i = ϵijkvjwk)

= ϵijk
∂f

∂xj
uk + fϵijk

∂uk
∂xj

(Product rule)

= ϵijk (∇f)j uk + f

(
ϵijk

∂uk
∂xj

)
= [∇f × u+ f (∇× u)]i.
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4. Divergence of a vector product

4. Divergence of a vector product

The divergence of a vector product u×v is

∇ · (u× v) =
∂

∂xi
(ϵijkujvk)

= ϵijk
∂uj
∂xi

vk + ϵijkuj
∂vk
∂xi

=

(
ϵkij

∂uj
∂xi

)
vk −

(
ϵjik

∂vk
∂xi

)
uj

= (∇× u) · v − (∇× v) · u.
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5. Curl of a vector product

5. Curl of a vector product

The curl of a vector product u×v is

[∇× (u× v)]i = ϵijk
∂

∂xj
(u× v)k ((v ×w)i = ϵijkvjwk)

= ϵijk
∂

∂xj
(ϵkℓmuℓvm)

= (δiℓδjm − δimδjℓ)
∂

∂xj
(uℓvm)

=
∂

∂xj
(uivj)−

∂

∂xj
(ujvi) (δijaj = ai)

= ui
∂vj
∂xj

+ vj
∂ui
∂xj

− uj
∂vi
∂xj

− vi
∂uj
∂xj

.
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5. Curl of a vector product�Part 2

5. Curl of a vector product�Part 2

The curl of a vector product u× v is

[∇× (u× v)]i = ui
∂vj
∂xj

+ vj
∂ui
∂xj

− uj
∂vi
∂xj

− vi
∂uj
∂xj

= [u(∇ · v)]i + vj
∂ui
∂xj

− [(u · ∇)v]i − vi
∂uj
∂xj

.

To simplify notation, we de�ne a new operator

u · ∇ = uj
∂

∂xj
.

We then obtain
[∇× (u× v)]i = [u(∇ · v) + (v · ∇)u− (u · ∇)v − v(∇ · u)]i.
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6. Gradient of a dot product

6. Gradient of a dot product

The gradient of a dot product u · v was the content of Practical

Question 2.4.

More precisely,

∇(u · v) = u× (∇× v) + v × (∇× u) + (u · ∇)v + (v · ∇)u.
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Summary Combining differential operators

- Part 1

Summary Combining di�erential operators

1. Gradient of a scalar product

∇(fg) = f∇g + g∇f.

2. Divergence of a scalar vector product

∇ · (fu) = (∇f) · u+ f(∇ · u).

3. Curl of a scalar vector product

[∇× (fu)]i = [∇f × u+ f∇× u]i.
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Summary Combining differential operators

- Part 2

Summary Combining di�erential operators - Part 2

4. Divergence of a vector product

∇ · (u× v) = (∇× u) · v − (∇× v) · u.

5. Curl of a vector product

[∇× (u× v)]i = [u(∇ · v) + (v · ∇)u− (u · ∇)v − v(∇ · u)]i.

6. Gradient of a dot product

∇(u · v) = u× (∇× v) + v × (∇× u) + (u · ∇)v + (v · ∇)u.
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Chapter 3: Preliminaries



Coordinate Systems

Coordinate Systems

Coordinate systems are de�ned by a set of basis vectors.

Vector basis is a set of vectors v1,v2,v3 that

are linearly independent: the only scalars λ1, λ2, λ3

satisfying

λ1v1 + λ2v2 + λ3v3 = (0, 0, 0)

are λ1 = λ2 = λ3 = 0.

span the space: Every vector v can be written as a linear

combination

v = µ1v1 + µ2v2 + µ3v3.
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Coordinate Systems - Example LI

Example - LI

The following vectors form a basis for R3:

v1 = (1, 0, 0), v2 = (2, 1, 0), v3 = (0, 0, 1).

Linearly Independent: Suppose that

λ1v1 + λ2v2 + λ3v3 = (0, 0, 0).

Then
(0, 0, 0) =λ1(1, 0, 0) + λ2(2, 1, 0) + λ3(0, 0, 1)

= (λ1, 0, 0) + (2λ2, λ2, 0) + (0, 0, λ3)

= (λ1 + 2λ2, λ2, λ3).

We see that λ1 = λ2 = λ3 = 0. Thus, these vectors are LI.

17 32



Coordinate Systems - Example Spam

Example - Span

Notice that any vector u = (u1, u2, u3) can be written as

u = (u1 − 2u2)(1, 0, 0) + u2(2, 1, 0) + u3(0, 0, 1)

= (u1 − 2u2)v1 + u2v2 + u3v3.

Thus, v1, v2, and v3 span the space.
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Orthogonal and Orthonormal coordinate

systems

De�nitions

A coordinate system is orthogonal if its basis vectors

intersect at 90◦ angles, i.e.,

vi · vj = 0, for i ̸= j.

A coordinate system is orthonormal if it is orthogonal and

its basis vectors have magnitude 1, i.e.,

▶ vi · vj = 0, for i ̸= j, and

▶ |vi| =
√
vi · vi = 1.
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Cartesian coordinate system

Cartesian coordinate system

The Cartesian coordinate system

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

is an example of orthonormal coordinate system.
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Example � Coordinate system

Example

The coordinate system

v = (1, 1, 0), u = (−1, 1, 0), w = (0, 0, 1)

is an example of orthogonal coordinate system:

We can show they are LI and span the space.

We have

(1, 1, 0) · (−1, 1, 0) = 1 · (−1) + 1 · 1 + 0 · 0 = 0

(1, 1, 0) · (0, 0, 1) = 1 · 0 + 1 · 0 + 0 · 1 = 0

(−1, 1, 0) · (0, 0, 1) = −1 · 0 + 1 · 0 + 0 · 1 = 0.

However, this is not an orthonormal coordinate system because

|(1, 1, 0)| =
√

(1, 1, 0) · (1, 1, 0) =
√
1 · 1 + 1 · 1 + 0 · 0 =

√
2 ̸= 1.
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Generalised coordinate systems

De�nition

Generalised coordinate systems do not necessarily have

orthogonal coordinate bases.

Example

In the previous slides we showed the the following are basis vectors

v1 = (1, 0, 0), v2 = (2, 1, 0), v3 = (0, 0, 1).

We have

(1, 0, 0) · (2, 1, 0) = 1 · 2 + 0 · 1 + 0 · 0 = 2 ̸= 0.

Thus, this is not an orthogonal coordinate system (and hence not

an orthonormal one).
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Cartesian coordinate system in 2D

Cartesian coordinate system in 2D

De�ne a 2D coordinate system by the plane (x1, x2).

(For instance, you can think of (x1, x2) as two orthogonal axes.)

Then, rotate (x1, x2) by some angle θ to obtain a new coordinate

system (x′1, x
′
2).

x

y

x′

y′

θ
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Cartesian coordinate system in 2D - Part 2

Cartesian coordinate system in 2D

Then, any point P in (x1, x2) is related to a point in (x′1, x
′
2) via

x′1 = x1 cos θ + x2 sin θ,

x′2 = x2 cos θ − x1 sin θ,

x1

x2

x′1

x′2

θ

x1 cos θ

x2 sin θ
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Cartesian coordinate system in 2D

Cartesian coordinate system in 2D

Again, when we rotate (x1, x2) by some angle θ, we obtain a new

coordinate system (x′1, x
′
2), and any point P in (x1, x2) is related to

a point in (x′1, x
′
2) via

x′1 = x1 cos θ + x2 sin θ,

x′2 = x2 cos θ − x1 sin θ,

or in matrix form(
x′1
x′2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x1
x2

)
.
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Rotation matrix

De�nition.

De�ne the rotation matrix by

L =

(
cos θ sin θ
− sin θ cos θ

)
=

(
L11 L12

L21 L22

)
.

Cartesian coordinate system in 2D

The new coordinate system (x′1, x
′
2) obtained by rotating (x1, x2) is

x′1 = L11x1 + L12x2 = L1jxj ,

x′2 = L21x1 + L22x2 = L2jxj ,

Or more compactly in su�x notation:

x′i = Lijxj .
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Properties of the Rotation Matrix

Properties of the Rotation Matrix

The rotation matrix

L =

(
cos θ sin θ
− sin θ cos θ

)
has important properties. For instance, what can we say about the

inverse and the transpose of this matrix?

The inverse is simply a rotation through −θ. Thus

L−1 =

(
cos(−θ) sin(−θ)
− sin(−θ) cos(−θ)

)
=

(
cos θ − sin θ
sin θ cos θ

)
= LT .
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Properties of the Rotation Matrix - Part 2

Properties of the Rotation Matrix

Since LT = L−1, we have LLT = I and LTL = I, where I is the

identity matrix.

In su�x notation we have

LijL
T
jk = δik that is LijLkj = δik

LT
ijLjk = δik that is LjiLjk = δik.

Recall the transformation

x′i = Lijxj .

We want to �nd the inverse transformation. Multiply both sides

by Lik:

Likx
′
i = LikLijxj = δkjxj = xk.
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Properties of the Rotation Matrix - Part 3

Properties of the Rotation Matrix

That is, the inverse transformation of

x′i = Lijxj
is

xi = Ljix
′
j .

Remark:

The previous formulas show the following.

If a vector v can be writen as (v1, v2) in the coordinate system

(x1, x2), one can use the formula

v′i = Lijvj
to �nd its coordinates (v′1, v

′
2) in (x′1, x

′
2).

If you know (v′1, v
′
2), you can �nd (v1, v2) by applying the

formula

vi = Ljiv
′
j . 29 32



Properties of the Rotation Matrix - Part 4

Another Property of the Rotation Matrix

The determinant of the rotation matrix is

|L| =
∣∣∣∣( cos θ sin θ

− sin θ cos θ

)∣∣∣∣ = cos2 θ + sin2 θ = 1.
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Cartesian coordinate system in 3D

Question:

What about dimension 3?

Next lecture

In the next lecture, we will generalise the concept of rotating

coordinate systems for the case of dimension 3.

We will mostly consider this case.

After that, we will be ready to de�ne a tensor!
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Next Lecture

Next time...

Chapter 3: Local Coordinate Transform.

▶ Preliminaries - Part 2
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