

TENSOR ANALYSIS

SLIDES WEEK 21 – LECTURE 1

PAULA LINS

2025/26

CHAPTERS 2 AND 3

Today: Chapter 2–Vector Differential Operators

- Vector differential operators
- Combinations of grad, div and curl
- Grad, div and curl applied to functions

Today: Chapter 3–Local Coordinate Transform

1. Preliminaries,
2. Dual bases,
3. Covariant and contravariant components of a vector,
4. The transformation rule,
5. The relationship between covariant and contravariant components, and
6. Arc length and the metric tensor.

REMINDER

REMINDER: DIFFERENTIAL OPERATORS

Reminder: Differential operators

Recall that

$$\nabla = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3} \right).$$

We have considered three differential operators:

- The gradient ∇f ,
- the divergence $\nabla \cdot \mathbf{u}$, and
- the curl $\nabla \times \mathbf{u}$,

where f denotes a scalar field and \mathbf{u} denotes a vector field.

POSITION VECTOR AND DIFFERENTIAL OPERATORS

Position vector

The **position vector** is

$$\mathbf{r} = (x_1, x_2, x_3).$$

We denote its **magnitude** by $\underline{r} = |\mathbf{r}|$.

Position vector and differential operators

We have computed the gradient of \underline{r} , and the divergence and the curl of \mathbf{r} :

- $\nabla \underline{r} = \frac{\mathbf{r}}{\underline{r}}$,
- $\nabla \cdot \mathbf{r} = 3$, and
- $\nabla \times \mathbf{r} = (0, 0, 0)$.

SUMMARY: COMBINATIONS OF GRAD, DIV, CURL

Summary: Combinations of grad, div, curl

1. Div Grad:

$$\nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x_j \partial x_j} = \nabla^2 f,$$

2. Curl Grad:

$$\nabla \times (\nabla f) = \mathbf{0},$$

3. Grad Div:

$$[\nabla(\nabla \cdot \mathbf{u})]_i = \frac{\partial^2 u_j}{\partial x_i \partial x_j},$$

4. Div Curl:

$$\nabla \cdot (\nabla \times \mathbf{u}) = \mathbf{0},$$

5. Curl Curl:

$$\nabla^2 \mathbf{u} = \nabla(\nabla \cdot \mathbf{u}) - \nabla \times (\nabla \times \mathbf{u}).$$

GRAD, DIV & CURL APPLIED TO FUNCTIONS

SUFFIX NOTATION & OPERATING OF PRODUCTS OF FUNCTIONS

Suffix notation & operating of products of functions

Suffix notation is useful for computing operations on products of functions.

For instance

- scalar products fg ,
- vector products $\mathbf{u} \times \mathbf{v}$,
- combinations of the two $f\mathbf{u}$

Next slides

In the following slides we will consider the following operations

1. Gradient of a scalar product $[\nabla(fg)]_i$,
2. Divergence of a scalar vector product $\nabla \cdot (f\mathbf{u})$,
3. Curl of a scalar vector product $\nabla \times (f\mathbf{u})$,
4. Divergence of a vector product $\nabla \cdot (\mathbf{u} \times \mathbf{v})$,
5. Curl of a vector product $\nabla \times (\mathbf{u} \times \mathbf{v})$, and
6. Gradient of a dot product $\nabla(\mathbf{u} \cdot \mathbf{v})$.

1. GRADIENT OF A SCALAR PRODUCT

1. Gradient of a scalar product

The **gradient** of a scalar product $\mathbf{f}\mathbf{g}$ is

$$\begin{aligned} [\nabla(fg)]_i &= \frac{\partial}{\partial x_i}(fg) \\ &= f \frac{\partial g}{\partial x_i} + g \frac{\partial f}{\partial x_i} \quad (\text{Product rule}) \\ &= [f\nabla g + g\nabla f]_i. \end{aligned}$$

Thus,

$$\nabla(fg) = f\nabla g + g\nabla f.$$

This is an extension of the product rule for differentiation.

2. DIVERGENCE OF A SCALAR VECTOR PRODUCT

2. Divergence of a scalar vector product

The **divergence** of a vector product $f\mathbf{u}$ is

$$\begin{aligned}\nabla \cdot (f\mathbf{u}) &= \frac{\partial}{\partial x_i} (fu_i) \\ &= \frac{\partial f}{\partial x_i} u_i + f \frac{\partial u_i}{\partial x_i} \quad (\text{Product rule}) \\ &= (\nabla f) \cdot \mathbf{u} + f(\nabla \cdot \mathbf{u}).\end{aligned}$$

3. CURL OF A SCALAR VECTOR PRODUCT

3. Curl of a scalar vector product

The **curl** of a scalar vector product $f\mathbf{u}$ is

$$\begin{aligned} [\nabla \times (f\mathbf{u})]_i &= \epsilon_{ijk} \frac{\partial}{\partial x_j} (fu_k) && ((\mathbf{v} \times \mathbf{w})_i = \epsilon_{ijk} v_j w_k) \\ &= \epsilon_{ijk} \frac{\partial f}{\partial x_j} u_k + f \epsilon_{ijk} \frac{\partial u_k}{\partial x_j} && (\text{Product rule}) \\ &= \epsilon_{ijk} (\nabla f)_j u_k + f \left(\epsilon_{ijk} \frac{\partial u_k}{\partial x_j} \right) \\ &= [\nabla f \times \mathbf{u} + f (\nabla \times \mathbf{u})]_i. \end{aligned}$$

4. DIVERGENCE OF A VECTOR PRODUCT

4. Divergence of a vector product

The **divergence** of a vector product $\mathbf{u} \times \mathbf{v}$ is

$$\begin{aligned}\nabla \cdot (\mathbf{u} \times \mathbf{v}) &= \frac{\partial}{\partial x_i} (\epsilon_{ijk} u_j v_k) \\ &= \epsilon_{ijk} \frac{\partial u_j}{\partial x_i} v_k + \epsilon_{ijk} u_j \frac{\partial v_k}{\partial x_i} \\ &= \left(\epsilon_{kij} \frac{\partial u_j}{\partial x_i} \right) v_k - \left(\epsilon_{jik} \frac{\partial v_k}{\partial x_i} \right) u_j \\ &= (\nabla \times \mathbf{u}) \cdot \mathbf{v} - (\nabla \times \mathbf{v}) \cdot \mathbf{u}.\end{aligned}$$

5. CURL OF A VECTOR PRODUCT

5. Curl of a vector product

The **curl** of a vector product $\mathbf{u} \times \mathbf{v}$ is

$$\begin{aligned} [\nabla \times (\mathbf{u} \times \mathbf{v})]_i &= \epsilon_{ijk} \frac{\partial}{\partial x_j} (\mathbf{u} \times \mathbf{v})_k & ((\mathbf{v} \times \mathbf{w})_i = \epsilon_{ijk} v_j w_k) \\ &= \epsilon_{ijk} \frac{\partial}{\partial x_j} (\epsilon_{k\ell m} u_\ell v_m) \\ &= (\delta_{i\ell} \delta_{jm} - \delta_{im} \delta_{j\ell}) \frac{\partial}{\partial x_j} (u_\ell v_m) \\ &= \frac{\partial}{\partial x_j} (u_i v_j) - \frac{\partial}{\partial x_j} (u_j v_i) & (\delta_{ij} a_j = a_i) \\ &= u_i \frac{\partial v_j}{\partial x_j} + v_j \frac{\partial u_i}{\partial x_j} - u_j \frac{\partial v_i}{\partial x_j} - v_i \frac{\partial u_j}{\partial x_j}. \end{aligned}$$

5. CURL OF A VECTOR PRODUCT–PART 2

5. Curl of a vector product–Part 2

The **curl** of a vector product $\mathbf{u} \times \mathbf{v}$ is

$$\begin{aligned} [\nabla \times (\mathbf{u} \times \mathbf{v})]_i &= u_i \frac{\partial v_j}{\partial x_j} + v_j \frac{\partial u_i}{\partial x_j} - u_j \frac{\partial v_i}{\partial x_j} - v_i \frac{\partial u_j}{\partial x_j} \\ &= [\mathbf{u}(\nabla \cdot \mathbf{v})]_i + v_j \frac{\partial u_i}{\partial x_j} - [(\mathbf{u} \cdot \nabla) \mathbf{v}]_i - v_i \frac{\partial u_j}{\partial x_j}. \end{aligned}$$

To simplify notation, we define a new operator

$$\mathbf{u} \cdot \nabla = u_j \frac{\partial}{\partial x_j}.$$

We then obtain

$$[\nabla \times (\mathbf{u} \times \mathbf{v})]_i = [\mathbf{u}(\nabla \cdot \mathbf{v}) + (\mathbf{v} \cdot \nabla) \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{v} - \mathbf{v}(\nabla \cdot \mathbf{u})]_i.$$

6. GRADIENT OF A DOT PRODUCT

6. Gradient of a dot product

The **gradient** of a dot product $\mathbf{u} \cdot \mathbf{v}$ was the content of Practical Question 2.4.

More precisely,

$$\nabla(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \times (\nabla \times \mathbf{v}) + \mathbf{v} \times (\nabla \times \mathbf{u}) + (\mathbf{u} \cdot \nabla)\mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{u}.$$

SUMMARY COMBINING DIFFERENTIAL OPERATORS

- PART 1

Summary Combining differential operators

1. Gradient of a scalar product

$$\nabla(fg) = f\nabla g + g\nabla f.$$

2. Divergence of a scalar vector product

$$\nabla \cdot (f\mathbf{u}) = (\nabla f) \cdot \mathbf{u} + f(\nabla \cdot \mathbf{u}).$$

3. Curl of a scalar vector product

$$[\nabla \times (f\mathbf{u})]_i = [\nabla f \times \mathbf{u} + f\nabla \times \mathbf{u}]_i.$$

SUMMARY COMBINING DIFFERENTIAL OPERATORS

- PART 2

Summary Combining differential operators - Part 2

4. Divergence of a vector product

$$\nabla \cdot (\mathbf{u} \times \mathbf{v}) = (\nabla \times \mathbf{u}) \cdot \mathbf{v} - (\nabla \times \mathbf{v}) \cdot \mathbf{u}.$$

5. Curl of a vector product

$$[\nabla \times (\mathbf{u} \times \mathbf{v})]_i = [\mathbf{u}(\nabla \cdot \mathbf{v}) + (\mathbf{v} \cdot \nabla)\mathbf{u} - (\mathbf{u} \cdot \nabla)\mathbf{v} - \mathbf{v}(\nabla \cdot \mathbf{u})]_i.$$

6. Gradient of a dot product

$$\nabla(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \times (\nabla \times \mathbf{v}) + \mathbf{v} \times (\nabla \times \mathbf{u}) + (\mathbf{u} \cdot \nabla)\mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{u}.$$

CHAPTER 3: PRELIMINARIES

COORDINATE SYSTEMS

Coordinate Systems

Coordinate systems are defined by a set of **basis vectors**.

Vector basis is a set of vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ that

- are **linearly independent**: the only scalars $\lambda_1, \lambda_2, \lambda_3$ satisfying

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3 = (0, 0, 0)$$

are $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

- **span the space**: Every vector \mathbf{v} can be written as a linear combination

$$\mathbf{v} = \mu_1 \mathbf{v}_1 + \mu_2 \mathbf{v}_2 + \mu_3 \mathbf{v}_3.$$

COORDINATE SYSTEMS - EXAMPLE LI

Example - LI

The following vectors form a basis for \mathbb{R}^3 :

$$\mathbf{v}_1 = (1, 0, 0), \mathbf{v}_2 = (2, 1, 0), \mathbf{v}_3 = (0, 0, 1).$$

■ **Linearly Independent:** Suppose that

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3 = (0, 0, 0).$$

Then

$$\begin{aligned} (0, 0, 0) &= \lambda_1(1, 0, 0) + \lambda_2(2, 1, 0) + \lambda_3(0, 0, 1) \\ &= (\lambda_1, 0, 0) + (2\lambda_2, \lambda_2, 0) + (0, 0, \lambda_3) \\ &= (\lambda_1 + 2\lambda_2, \lambda_2, \lambda_3). \end{aligned}$$

We see that $\lambda_1 = \lambda_2 = \lambda_3 = 0$. Thus, these vectors are LI.

COORDINATE SYSTEMS - EXAMPLE SPAM

Example - Span

Notice that any vector $\mathbf{u} = (u_1, u_2, u_3)$ can be written as

$$\begin{aligned}\mathbf{u} &= (u_1 - 2u_2)(1, 0, 0) + u_2(2, 1, 0) + u_3(0, 0, 1) \\ &= (u_1 - 2u_2)\mathbf{v}_1 + u_2\mathbf{v}_2 + u_3\mathbf{v}_3.\end{aligned}$$

Thus, \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 span the space.

ORTHOGONAL AND ORTHONORMAL COORDINATE SYSTEMS

Definitions

- A coordinate system is **orthogonal** if its basis vectors intersect at 90° angles, i.e.,

$$\mathbf{v}_i \cdot \mathbf{v}_j = 0, \text{ for } i \neq j.$$

- A coordinate system is **orthonormal** if it is orthogonal and its basis vectors have magnitude 1, i.e.,

► $\mathbf{v}_i \cdot \mathbf{v}_j = 0$, for $i \neq j$, and

► $|\mathbf{v}_i| = \sqrt{\mathbf{v}_i \cdot \mathbf{v}_i} = 1$.

CARTESIAN COORDINATE SYSTEM

Cartesian coordinate system

The **Cartesian coordinate** system

$$\mathbf{i} = (1, 0, 0), \quad \mathbf{j} = (0, 1, 0), \quad \mathbf{k} = (0, 0, 1)$$

is an example of **orthonormal coordinate system**.

EXAMPLE – COORDINATE SYSTEM

Example

The coordinate system

$$\mathbf{v} = (1, 1, 0), \quad \mathbf{u} = (-1, 1, 0), \quad \mathbf{w} = (0, 0, 1)$$

is an example of **orthogonal coordinate system**:

- We can show they are LI and span the space.
- We have

$$(1, 1, 0) \cdot (-1, 1, 0) = 1 \cdot (-1) + 1 \cdot 1 + 0 \cdot 0 = 0$$

$$(1, 1, 0) \cdot (0, 0, 1) = 1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0$$

$$(-1, 1, 0) \cdot (0, 0, 1) = -1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0.$$

However, this is **not** an orthonormal coordinate system because

$$|(1, 1, 0)| = \sqrt{(1, 1, 0) \cdot (1, 1, 0)} = \sqrt{1 \cdot 1 + 1 \cdot 1 + 0 \cdot 0} = \sqrt{2} \neq 1.$$

GENERALISED COORDINATE SYSTEMS

Definition

Generalised coordinate systems do not necessarily have orthogonal coordinate bases.

Example

In the previous slides we showed the the following are basis vectors

$$\mathbf{v}_1 = (1, 0, 0), \mathbf{v}_2 = (2, 1, 0), \mathbf{v}_3 = (0, 0, 1).$$

We have

$$(1, 0, 0) \cdot (2, 1, 0) = 1 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 = 2 \neq 0.$$

Thus, this is **not** an orthogonal coordinate system (and hence not an orthonormal one).

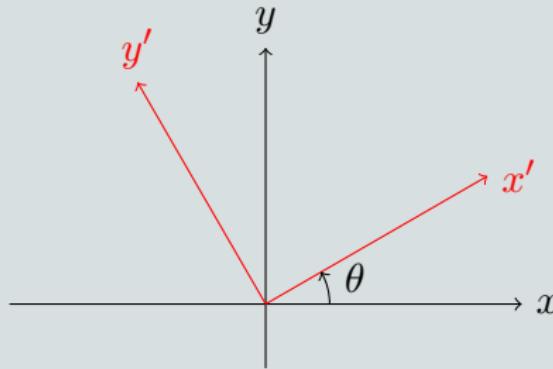
CARTESIAN COORDINATE SYSTEM IN 2D

Cartesian coordinate system in 2D

Define a $2D$ coordinate system by the plane (x_1, x_2) .

(For instance, you can think of (x_1, x_2) as two orthogonal axes.)

Then, rotate (x_1, x_2) by some angle θ to obtain a new coordinate system (x'_1, x'_2) .



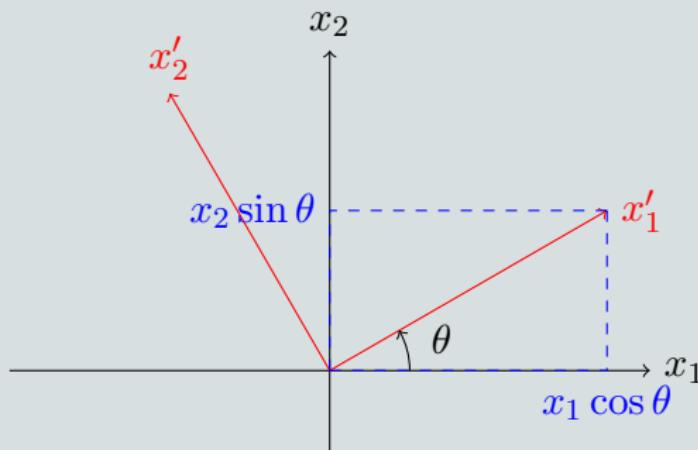
CARTESIAN COORDINATE SYSTEM IN 2D - PART 2

Cartesian coordinate system in 2D

Then, any point P in (x_1, x_2) is related to a point in (x'_1, x'_2) via

$$x'_1 = x_1 \cos \theta + x_2 \sin \theta,$$

$$x'_2 = x_2 \cos \theta - x_1 \sin \theta,$$



CARTESIAN COORDINATE SYSTEM IN 2D

Cartesian coordinate system in 2D

Again, when we rotate (x_1, x_2) by some angle θ , we obtain a new coordinate system (x'_1, x'_2) , and any point P in (x_1, x_2) is related to a point in (x'_1, x'_2) via

$$\begin{aligned}x'_1 &= x_1 \cos \theta + x_2 \sin \theta, \\x'_2 &= x_2 \cos \theta - x_1 \sin \theta,\end{aligned}$$

or in matrix form

$$\begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

ROTATION MATRIX

Definition.

Define the **rotation matrix** by

$$L = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}.$$

Cartesian coordinate system in 2D

The new coordinate system (x'_1, x'_2) obtained by rotating (x_1, x_2) is

$$\begin{aligned} x'_1 &= L_{11}x_1 + L_{12}x_2 = L_{1j}x_j, \\ x'_2 &= L_{21}x_1 + L_{22}x_2 = L_{2j}x_j, \end{aligned}$$

Or more compactly in suffix notation:

$$x'_i = L_{ij}x_j.$$

PROPERTIES OF THE ROTATION MATRIX

Properties of the Rotation Matrix

The rotation matrix

$$L = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

has important properties. For instance, what can we say about the inverse and the transpose of this matrix?

The inverse is simply a rotation through $-\theta$. Thus

$$L^{-1} = \begin{pmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = L^T.$$

Properties of the Rotation Matrix

Since $L^T = L^{-1}$, we have $LL^T = I$ and $L^T L = I$, where I is the identity matrix.

In suffix notation we have

$$\begin{aligned} L_{ij}L_{jk}^T &= \delta_{ik} & \text{that is} & & L_{ij}L_{kj} &= \delta_{ik} \\ L_{ij}^T L_{jk} &= \delta_{ik} & \text{that is} & & L_{ji}L_{jk} &= \delta_{ik}. \end{aligned}$$

Recall the transformation

$$x'_i = L_{ij}x_j.$$

We want to find the inverse transformation. Multiply both sides by L_{ik} :

$$L_{ik}x'_i = L_{ik}L_{ij}x_j = \delta_{kj}x_j = x_k.$$

Properties of the Rotation Matrix

That is, the **inverse transformation** of

$$x'_i = L_{ij}x_j$$

is

$$x_i = L_{ji}x'_j.$$

Remark:

The previous formulas show the following.

- If a vector \mathbf{v} can be written as (v_1, v_2) in the coordinate system (x_1, x_2) , one can use the formula

$$v'_i = L_{ij}v_j$$

to find its coordinates (v'_1, v'_2) in (x'_1, x'_2) .

- If you know (v'_1, v'_2) , you can find (v_1, v_2) by applying the formula

Another Property of the Rotation Matrix

The determinant of the rotation matrix is

$$|L| = \left| \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \right| = \cos^2 \theta + \sin^2 \theta = 1.$$

CARTESIAN COORDINATE SYSTEM IN 3D

Question:

What about dimension 3?

Next lecture

- In the next lecture, we will generalise the concept of rotating coordinate systems for the case of dimension 3.
- We will mostly consider this case.
- After that, we will be ready to define a tensor!

NEXT LECTURE

Next time...

- Chapter 3: Local Coordinate Transform.
 - ▶ Preliminaries - Part 2