
Tensor Analysis – Practical 3
Solutions

Information:

• Please make sure to complete all exercises before the next lecture.

• The exercises marked with [See lecture] were solved in class.

• The exercises are not organised by difficulty.

3.1 [See lecture] Use the transformation law to show that ∇ is a vector.

Solution: We must show that

∇′
i = Lij∇j .

Note that

[∇′]i =
∂

∂x′i

=
∂xj
∂x′i

∂

∂xj
(Chain rule)

= Lij
∂

∂xj
,

(
∂xj
∂x′i

= Lij

)
.

As [∇′]i = Lij
∂

∂xj
= Lij [∇]j , we have our result.

3.2 [See lecture] Let f be a scalar field. Show that ∇ · (∇f) is is a scalar using the

transformation law.

Solution: We must show that

(∇ · (∇f))′ = ∇ · (∇f).

Let us first write (∇ · (∇f))′ in suffix notation.

(∇ · (∇f))′ = ∇′ · (∇′f ′)

= ∇′
i(∇′f ′)i

= ∇′
i∇′

if
′.

Now, since f is a scalar field, its transformation law is f ′ = f . Since ∇ is a vector (see

previous exercise) its transformation law is

∇′
i = Lij∇j .
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Therefore

(∇ · (∇f))′ = ∇′
i∇′

if
′

= (Lij∇j)(Lik∇k)f

= LijLik∇j∇kf

= δjk∇j∇kf

= ∇k∇kf

= ∇k(∇f)k

= ∇ · (∇f),

which is the transformation law of a scalar quantity.

3.3 Use the transformation law and the fact that ∇ and w are vectors to show that

w · ∇

is a scalar.

Solution: We must show that

(w · ∇)′ = w · ∇.

We know that w and ∇ are vectors, thus w′
i = Lijwj and ∇′

i =
∂
∂x′

i
= Lik

∂
∂xk

= Lik∇k.

Thus, we get

(w · ∇)′ = w′
i

∂

∂x′i

= LijwjLik
∂

∂xk

= LijLikwj
∂

∂xk

= δjkwj
∂

∂xk
(LijLik = δjk)

= wj
∂

∂xj

= w · ∇.
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3.4 Consider Lij =
∂x′

i
∂xj

. Show that
∂Lij

∂x′
i
= 0.

Solution: We have

∂Lij

∂x′i
=

∂2x′i
∂x′i∂xj

=
∂2x′i

∂xj∂x′i
(as the order of the differential does not matter)

=
∂

∂xj

∂x′i
∂x′i

=
∂

∂xj
δii

=
∂

∂xj
(3)

= 0.

Warning: Note that in the expression
∂x′

i
∂x′

i
, the index i is repeated, so this expression is

actually
∑3

i=1
∂x′

i
∂x′

i
.

3.5 Suppose e1, e2, e3 are basis vectors for a Cartesian coordinate system, and let e′1, e
′
2, e

′
3

be the images of e1, e2, e3 under a rotation. For each i, let

ei = ai1e
′
1 + ai2e

′
2 + ai3e

′
3

be the expansion for ei in terms of e′j . Find expressions for the aij ’s in terms of ei and e′j .

Solution: From ei = aije
′
j , we claim that

aij = ei · e′j .

We see this from considering the right-hand side:

ei · e′j = (aike
′
k) · e′j

= aik(e
′
k · e′j)

= aikδkj (since the basis vectors are orthonormal)

= aij ,

as required.
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3.6 Let u be the vector field defined by

u = h(r)r,

where h(r) is an arbitrary differentiable function, and r is the position vector r = (x1, x2, x3)

with r = |r|.

Show, using suffix notation, that ∇× u = 0.

[Hint: Exercise 2.8 can help you here: ∇h(r) = h′(r)r/r.]

Solution: In suffix notation, we have

[∇× u]i = ϵijk
∂

∂xj
uk

= ϵijk
∂

∂xj

(
h(r)xk

)
= ϵijk

[
∂h(r)

∂xj
xk + h(r)

∂xk
∂xj

]
= ϵijk

[
h′(r)xj

r
xk + h(r)δjk

] (
using Exercise 2.8:

∂h(r)

∂r
=

h′(r)xj
r

)
=

h′(r)

r
ϵijkxjxk + h(r)ϵijkδjk

=
h′(r)

r
ϵijkxjxk (as ϵijkδjk = 0) .

Now, notice that

ϵijkxjxk = −ϵjikxkxj

as ϵijk = −ϵikj but xjxk = xkxj . If we relabel k ↔ j, we get −ϵikjxkxj = −ϵijkxixj . In

conclusion,

ϵijkxjxk = −ϵijkxjxk thus ϵijkxjxk = 0.

Hence

∇× u = 0.
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3.7 Show that ∇ · ∇2u = ∇2∇ · u in two ways:

(1) directly using suffix notation;

(2) first using

∇2u = ∇(∇ · u)−∇× (∇× u)

from the lectures, and then using suffix notation.

Solution:

(1) We have

∇ · ∇2u =
∂

∂xj

( ∂2uj
∂xk∂xk

)
=

∂3uj
∂xj∂xk∂xk

=
∂3uj

∂xk∂xk∂xj

=
∂2

∂xk∂xk

(∂uj
∂xj

)
= ∇2∇ · u.

(2) Here we have

∇ · ∇2u = ∇ ·
(
∇(∇ · u)−∇× (∇× u)

)
=

∂

∂xj

(
∇(∇ · u)−∇× (∇× u)

)
j

=
∂

∂xj

(( ∂2uk
∂xj∂xk

)
− ϵjℓm

∂

∂xℓ
(∇× u)m

)
=

∂

∂xj

(( ∂2uk
∂xj∂xk

)
− ϵjℓm

∂

∂xℓ

(
ϵmpq

∂uq
∂xp

))
=

∂

∂xj

(( ∂2uk
∂xj∂xk

)
− ϵjℓmϵmpq

∂2uq
∂xℓ∂xp

)
as

∂ϵmpq

∂xℓ
= 0

=
∂3uk

∂xj∂xj∂xk
− (δjpδℓq − δjqδℓp)

∂3uq
∂xj∂xℓ∂xp

=
∂3uk

∂xj∂xj∂xk
− ∂3uℓ

∂xj∂xℓ∂xj
+

∂3uj
∂xj∂xp∂xp

=
∂3uk

∂xj∂xj∂xk
− ∂3uk

∂xj∂xj∂xk
+

∂3uk
∂xj∂xj∂xk

=
∂3uk

∂xj∂xj∂xk
,
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as the order of derivatives does not matter, and as each of the three terms are separate we

may relabel all dummy suffices. Hence we have the required result, as

∇2 =
∂2

∂xj∂xj
.

3.8 Let f and g be scalar fields.

(1) Show, using suffix notation, that ∇× (f∇f) = 0.

(2) Simplify ∇ · (g∇g) to an expression involving just one operator acting on one scalar

field.

Solution: (1) We have

[∇× (f∇f)]i = ϵijk
∂(f∇f)k

∂xj

= ϵijk
∂

∂xj
(f

∂f

∂xk
)

= ϵijk
∂

∂xj

∂

∂xk

(
1

2
f2

)
.

As in the previous exercise, we see that

ϵijk
∂

∂xj

∂

∂xk

(
1

2
f2

)
= −ϵikj

∂

∂xk

∂

∂xj

(
1

2
f2

)
.

because the order of derivatives does not matter. Then, we relabel the indices k ↔ j and get

ϵijk
∂

∂xj

∂

∂xk

(
1

2
f2

)
= −ϵijk

∂

∂xj

∂

∂xk

(
1

2
f2

)
.

which implies ϵijk
∂

∂xj

∂
∂xk

(
1
2f

2
)
= (0)i.

(2) We have

∇ · (g∇g) =
∂

∂xj
(g∇g)j

=
∂

∂xj

(
g
∂g

∂xj

)
=

∂2

∂xj∂xj

(
1

2
g2
)

= ∇2
(1
2
g2
)
.
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