

Tensor Analysis – Practical 3

Solutions

Information:

- Please make sure to complete **all** exercises **before** the next lecture.
- The exercises marked with [See lecture] were solved in class.
- The exercises are **not organised by difficulty**.

3.1 [See lecture] Use the **transformation law** to show that ∇ is a vector.

Solution: We must show that

$$\nabla'_i = L_{ij} \nabla_j.$$

Note that

$$\begin{aligned} [\nabla']_i &= \frac{\partial}{\partial x'_i} \\ &= \frac{\partial x_j}{\partial x'_i} \frac{\partial}{\partial x_j} \quad (\text{Chain rule}) \\ &= L_{ij} \frac{\partial}{\partial x_j}, \quad \left(\frac{\partial x_j}{\partial x'_i} = L_{ij} \right). \end{aligned}$$

As $[\nabla']_i = L_{ij} \frac{\partial}{\partial x_j} = L_{ij} [\nabla]_j$, we have our result.

3.2 [See lecture] Let f be a scalar field. Show that $\nabla \cdot (\nabla f)$ is a scalar using the **transformation law**.

Solution: We must show that

$$(\nabla \cdot (\nabla f))' = \nabla \cdot (\nabla f).$$

Let us first write $(\nabla \cdot (\nabla f))'$ in suffix notation.

$$\begin{aligned} (\nabla \cdot (\nabla f))' &= \nabla' \cdot (\nabla' f') \\ &= \nabla'_i (\nabla' f')_i \\ &= \nabla'_i \nabla'_i f'. \end{aligned}$$

Now, since f is a scalar field, its transformation law is $f' = f$. Since ∇ is a vector (see previous exercise) its transformation law is

$$\nabla'_i = L_{ij} \nabla_j.$$

1

Therefore

$$\begin{aligned}
 (\nabla \cdot (\nabla f))' &= \nabla'_i \nabla'_i f' \\
 &= (L_{ij} \nabla_j)(L_{ik} \nabla_k) f \\
 &= L_{ij} L_{ik} \nabla_j \nabla_k f \\
 &= \delta_{jk} \nabla_j \nabla_k f \\
 &= \nabla_k \nabla_k f \\
 &= \nabla_k (\nabla f)_k \\
 &= \nabla \cdot (\nabla f),
 \end{aligned}$$

which is the transformation law of a scalar quantity.

3.3 Use the **transformation law** and the fact that ∇ and \mathbf{w} are vectors to show that

$$\mathbf{w} \cdot \nabla$$

is a scalar.

Solution: We must show that

$$(\mathbf{w} \cdot \nabla)' = \mathbf{w} \cdot \nabla.$$

We know that \mathbf{w} and ∇ are vectors, thus $w'_i = L_{ij} w_j$ and $\nabla'_i = \frac{\partial}{\partial x'_i} = L_{ik} \frac{\partial}{\partial x_k} = L_{ik} \nabla_k$.

Thus, we get

$$\begin{aligned}
 (\mathbf{w} \cdot \nabla)' &= w'_i \frac{\partial}{\partial x'_i} \\
 &= L_{ij} w_j L_{ik} \frac{\partial}{\partial x_k} \\
 &= L_{ij} L_{ik} w_j \frac{\partial}{\partial x_k} \\
 &= \delta_{jk} w_j \frac{\partial}{\partial x_k} \quad (L_{ij} L_{ik} = \delta_{jk}) \\
 &= w_j \frac{\partial}{\partial x_j} \\
 &= \mathbf{w} \cdot \nabla.
 \end{aligned}$$

3.4 Consider $L_{ij} = \frac{\partial x'_i}{\partial x_j}$. Show that $\frac{\partial L_{ij}}{\partial x'_i} = 0$.

Solution: We have

$$\begin{aligned}\frac{\partial L_{ij}}{\partial x'_i} &= \frac{\partial^2 x'_i}{\partial x'_i \partial x_j} \\ &= \frac{\partial^2 x'_i}{\partial x_j \partial x'_i} \quad (\text{as the order of the differential does not matter}) \\ &= \frac{\partial}{\partial x_j} \frac{\partial x'_i}{\partial x'_i} \\ &= \frac{\partial}{\partial x_j} \delta_{ii} \\ &= \frac{\partial}{\partial x_j} (3) \\ &= 0.\end{aligned}$$

Warning: Note that in the expression $\frac{\partial x'_i}{\partial x'_i}$, the index i is repeated, so this expression is actually $\sum_{i=1}^3 \frac{\partial x'_i}{\partial x'_i}$.

3.5 Suppose $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are basis vectors for a Cartesian coordinate system, and let $\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3$ be the images of $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ under a rotation. For each i , let

$$\mathbf{e}_i = a_{i1} \mathbf{e}'_1 + a_{i2} \mathbf{e}'_2 + a_{i3} \mathbf{e}'_3$$

be the expansion for \mathbf{e}_i in terms of \mathbf{e}'_j . Find expressions for the a_{ij} 's in terms of \mathbf{e}_i and \mathbf{e}'_j .

Solution: From $\mathbf{e}_i = a_{ij} \mathbf{e}'_j$, we claim that

$$a_{ij} = \mathbf{e}_i \cdot \mathbf{e}'_j.$$

We see this from considering the right-hand side:

$$\begin{aligned}\mathbf{e}_i \cdot \mathbf{e}'_j &= (a_{ik} \mathbf{e}'_k) \cdot \mathbf{e}'_j \\ &= a_{ik} (\mathbf{e}'_k \cdot \mathbf{e}'_j) \\ &= a_{ik} \delta_{kj} \quad (\text{since the basis vectors are orthonormal}) \\ &= a_{ij},\end{aligned}$$

as required.

3.6 Let \mathbf{u} be the vector field defined by

$$\mathbf{u} = h(r)\mathbf{r},$$

where $h(r)$ is an arbitrary differentiable function, and \mathbf{r} is the position vector $\mathbf{r} = (x_1, x_2, x_3)$ with $r = |\mathbf{r}|$.

Show, using suffix notation, that $\nabla \times \mathbf{u} = 0$.

[Hint: Exercise 2.8 can help you here: $\nabla h(r) = h'(r)\mathbf{r}/r$.]

Solution: In suffix notation, we have

$$\begin{aligned} [\nabla \times \mathbf{u}]_i &= \epsilon_{ijk} \frac{\partial}{\partial x_j} u_k \\ &= \epsilon_{ijk} \frac{\partial}{\partial x_j} (h(r)x_k) \\ &= \epsilon_{ijk} \left[\frac{\partial h(r)}{\partial x_j} x_k + h(r) \frac{\partial x_k}{\partial x_j} \right] \\ &= \epsilon_{ijk} \left[\frac{h'(r)x_j}{r} x_k + h(r)\delta_{jk} \right] \quad \left(\text{using Exercise 2.8: } \frac{\partial h(r)}{\partial r} = \frac{h'(r)x_j}{r} \right) \\ &= \frac{h'(r)}{r} \epsilon_{ijk} x_j x_k + h(r) \epsilon_{ijk} \delta_{jk} \\ &= \frac{h'(r)}{r} \epsilon_{ijk} x_j x_k \quad (\text{as } \epsilon_{ijk} \delta_{jk} = 0). \end{aligned}$$

Now, notice that

$$\epsilon_{ijk} x_j x_k = -\epsilon_{jik} x_k x_j$$

as $\epsilon_{ijk} = -\epsilon_{ikj}$ but $x_j x_k = x_k x_j$. If we relabel $k \leftrightarrow j$, we get $-\epsilon_{ikj} x_k x_j = -\epsilon_{ijk} x_i x_j$. In conclusion,

$$\epsilon_{ijk} x_j x_k = -\epsilon_{ijk} x_j x_k \quad \text{thus } \epsilon_{ijk} x_j x_k = 0.$$

Hence

$$\nabla \times \mathbf{u} = \mathbf{0}.$$

3.7 Show that $\nabla \cdot \nabla^2 \mathbf{u} = \nabla^2 \nabla \cdot \mathbf{u}$ in two ways:

- (1) directly using suffix notation;
- (2) first using

$$\nabla^2 \mathbf{u} = \nabla(\nabla \cdot \mathbf{u}) - \nabla \times (\nabla \times \mathbf{u})$$

from the lectures, and then using suffix notation.

Solution:

(1) We have

$$\begin{aligned} \nabla \cdot \nabla^2 \mathbf{u} &= \frac{\partial}{\partial x_j} \left(\frac{\partial^2 u_j}{\partial x_k \partial x_k} \right) \\ &= \frac{\partial^3 u_j}{\partial x_j \partial x_k \partial x_k} \\ &= \frac{\partial^3 u_j}{\partial x_k \partial x_k \partial x_j} \\ &= \frac{\partial^2}{\partial x_k \partial x_k} \left(\frac{\partial u_j}{\partial x_j} \right) \\ &= \nabla^2 \nabla \cdot \mathbf{u}. \end{aligned}$$

(2) Here we have

$$\begin{aligned} \nabla \cdot \nabla^2 \mathbf{u} &= \nabla \cdot \left(\nabla(\nabla \cdot \mathbf{u}) - \nabla \times (\nabla \times \mathbf{u}) \right) \\ &= \frac{\partial}{\partial x_j} \left(\nabla(\nabla \cdot \mathbf{u}) - \nabla \times (\nabla \times \mathbf{u}) \right)_j \\ &= \frac{\partial}{\partial x_j} \left(\left(\frac{\partial^2 u_k}{\partial x_j \partial x_k} \right) - \epsilon_{j\ell m} \frac{\partial}{\partial x_\ell} (\nabla \times \mathbf{u})_m \right) \\ &= \frac{\partial}{\partial x_j} \left(\left(\frac{\partial^2 u_k}{\partial x_j \partial x_k} \right) - \epsilon_{j\ell m} \frac{\partial}{\partial x_\ell} \left(\epsilon_{mpq} \frac{\partial u_q}{\partial x_p} \right) \right) \\ &= \frac{\partial}{\partial x_j} \left(\left(\frac{\partial^2 u_k}{\partial x_j \partial x_k} \right) - \epsilon_{j\ell m} \epsilon_{mpq} \frac{\partial^2 u_q}{\partial x_\ell \partial x_p} \right) \quad \text{as } \frac{\partial \epsilon_{mpq}}{\partial x_\ell} = 0 \\ &= \frac{\partial^3 u_k}{\partial x_j \partial x_j \partial x_k} - (\delta_{jp} \delta_{\ell q} - \delta_{jq} \delta_{\ell p}) \frac{\partial^3 u_q}{\partial x_j \partial x_\ell \partial x_p} \\ &= \frac{\partial^3 u_k}{\partial x_j \partial x_j \partial x_k} - \frac{\partial^3 u_\ell}{\partial x_j \partial x_\ell \partial x_j} + \frac{\partial^3 u_j}{\partial x_j \partial x_p \partial x_p} \\ &= \frac{\partial^3 u_k}{\partial x_j \partial x_j \partial x_k} - \frac{\partial^3 u_k}{\partial x_j \partial x_j \partial x_k} + \frac{\partial^3 u_k}{\partial x_j \partial x_j \partial x_k} \\ &= \frac{\partial^3 u_k}{\partial x_j \partial x_j \partial x_k}, \end{aligned}$$

as the order of derivatives does not matter, and as each of the three terms are separate we may relabel all dummy suffices. Hence we have the required result, as

$$\nabla^2 = \frac{\partial^2}{\partial x_j \partial x_j}.$$

3.8 Let f and g be scalar fields.

- (1) Show, using suffix notation, that $\nabla \times (f \nabla f) = \mathbf{0}$.
- (2) Simplify $\nabla \cdot (g \nabla g)$ to an expression involving just one operator acting on one scalar field.

Solution: (1) We have

$$\begin{aligned} [\nabla \times (f \nabla f)]_i &= \epsilon_{ijk} \frac{\partial (f \nabla f)_k}{\partial x_j} \\ &= \epsilon_{ijk} \frac{\partial}{\partial x_j} \left(f \frac{\partial f}{\partial x_k} \right) \\ &= \epsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_k} \left(\frac{1}{2} f^2 \right). \end{aligned}$$

As in the previous exercise, we see that

$$\epsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_k} \left(\frac{1}{2} f^2 \right) = -\epsilon_{ikj} \frac{\partial}{\partial x_k} \frac{\partial}{\partial x_j} \left(\frac{1}{2} f^2 \right),$$

because the order of derivatives does not matter. Then, we relabel the indices $k \leftrightarrow j$ and get

$$\epsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_k} \left(\frac{1}{2} f^2 \right) = -\epsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_k} \left(\frac{1}{2} f^2 \right),$$

which implies $\epsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_k} \left(\frac{1}{2} f^2 \right) = (\mathbf{0})_i$.

(2) We have

$$\begin{aligned} \nabla \cdot (g \nabla g) &= \frac{\partial}{\partial x_j} (g \nabla g)_j \\ &= \frac{\partial}{\partial x_j} \left(g \frac{\partial g}{\partial x_j} \right) \\ &= \frac{\partial^2}{\partial x_j \partial x_j} \left(\frac{1}{2} g^2 \right) \\ &= \nabla^2 \left(\frac{1}{2} g^2 \right). \end{aligned}$$
