

Task 1

In the general linear least squares (GLS) method, we write our prediction as a linear combination of *functions* z_i . Similarly to the previous fitting work you have done, we can express this linear combination as a *matrix product*.

$$\mathbf{y} = \mathbf{Z}\mathbf{a} + \mathbf{e}$$

\mathbf{Z} stores each function z_i evaluated at each x_j , \mathbf{a} is the vector of each function's *coefficient*, and \mathbf{e} contains the *observed error values*. By defining a total error function S as the sum of squared error, then taking partial derivatives of S , we can derive a similar set of linear equations that can be solved to find the optimal parameters a_i .

$$\mathbf{Z}^\top \mathbf{Z}\mathbf{a} = \mathbf{Z}^\top \mathbf{y}$$

As this is in the form $\mathbf{A}\mathbf{x} = \mathbf{b}$, you can use data to construct $\mathbf{Z}^\top \mathbf{Z}$ and $\mathbf{Z}^\top \mathbf{y}$, then use Gauss elimination or Gauss-Jordan elimination to solve for the parameter vector \mathbf{a} .

i) Fit a model of the form $y_i = a_0 + a_1 e^{-x_i} + a_2 e^{-2x_i}$ to the following data using the above described method. (The expected solution is given in the slides - you may have to click the down arrow on the slides to see the full solution!)

```
x = [-3.0, -2.3, -1.6, -0.9, -0.2, 0.5, 1.2, 1.9, 2.6, 3.3, 4.0]
y = [8.26383742, 6.44045188, 4.74903073, 4.565647, 3.61011683, 3.32743918,
     2.9643915, 1.02239181, 1.09485138, 1.84053372, 1.49110572]
```

Task 2

The matrix $(\mathbf{Z}^\top \mathbf{Z})^{-1}$ contains statistical information about the coefficients a_i . The *variance* values $\text{Var}(a_i) \propto [(\mathbf{Z}^\top \mathbf{Z})^{-1}]_{i,i}$ lie along the diagonal entries and the *covariances*, $\text{Cov}(a_i, a_j) \propto [(\mathbf{Z}^\top \mathbf{Z})^{-1}]_{i,j}$, $i \neq j$, lie in the off-diagonal entries. The variance still needs to be multiplied by the standard error. Letting

$$f(x_i) = a_0 z_0(x_i) + a_1 z_1(x_i) + \cdots + a_{m-1} z_{m-1}(x_i),$$

the standard error squared is given by

$$s^2 = \frac{1}{n-m} \sum_{i=0}^{n-1} (y_i - f(x_i))^2$$

So, $\text{Var}(a_i) = s^2 [(\mathbf{Z}^\top \mathbf{Z})^{-1}]_{i,i} = s^2(a_i)$.

i) Fit a function of the form $y_i = a_0 + a_1 x_i + e_i$ to the following data.

```
x = [10.0, 16.3, 23.0, 27.5, 31.0, 35.6, 39.0, 41.5, 42.9, 45.0, 46.0,
     45.5, 46.0, 49.0, 50.0]
y = [8.953, 16.405, 22.607, 27.769, 32.065, 35.641, 38.617, 41.095,
     43.156, 44.872, 46.301, 47.490, 48.479, 49.303, 49.988]
```

- ii) Using the above method, output the variance of each parameter a_i to the terminal.
- iii) Let $T = t_{95/2, n-2}$ be the critical value for the t-distribution for 95% confidence with $n - 2$ degrees of freedom and let $s(a_i) = \sqrt{s^2(a_i)}$ be the standard deviation of the parameter a_i .

$$\mathbb{P}(a_i \in (a_i - Ts(a_i), a_i + Ts(a_i))) = 0.95$$

Using an appropriate t-distribution, use the parameters' variance values to output 95% confidence intervals to the terminal for each parameter a_i .

* If there is something up with this worksheet, please contact me (Ewan Dalgliesh) at 26192682@students.lincoln.ac.uk or will endeavour to fix any mistakes! (Apologies in advance, of course)